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1 Proof of Lemma 2

Proof: We start from the linear model solution and proceed as follows:
w o= (I-yP§) '
— (I—~(@7®) 'oTP )" (37d) 0T R
= (®T® —40TP"®) 1 ®T R = wi.

where the penultimate substitutes the definition of r¢ and Pg in (3a) and (3b) of the main text,
respectively. O

2 Proof of Theorem 3

Proof: The Bellman error in the context of linear value functions can be represented as

BE(Q"(s,a)) = R(s,a) + [’y Z PT(s',d|s,a)®(s, a/)wg} — ®(s,a)w] (A1)

We proceed to represent (A1) in its corresponding matrix form as
BE(Q™) = R + yP"ow] — dw} (A2)
Plugging (5) of the main text into (A2), we have
BE(Q") = R+yP 0w} — dw]
(AR + ®rg) + v(AL + PP )wWi — dPw]
= Ap+YAFWE + Pre — (I — yPF)W5
= Ap+YAFWE + Pre — (I — yPF)w
AR +vAZWE.

The penultimate step follows from Lemma 2, and the last follows equation (4b) of the main text. [J

3 Proof of Theorem 7

Proof: Equation (6) of the main text implies that there exist perfect linear predictors of the reward
and the expected next state, given & = AFE,. Specifically, we pick P§ = D;E; and ro = D..
Next, we have

AZ P™® — P = P"® — AE,D:E,

= P"®—-P"AE, =P"®—-P"® =0
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and
AR:qu)T@:R*AEﬂD;:R*R:O

From Theorem 3, this implies zero Bellman error. O

4 Proof of Theorem 8§

Proof: Consider an MDP for which the () and P™ are not linear in A. This would be the typical case
in which one would wish to use a neural network or other non-linear approximation method. P™ can
be deterministic so that P™ A is a matrix of raw encodings of actual states, not mixtures. Assume
k =l and pick & = P7, i.e., pick a vacuous encoder. (For this example we will ignore the reward
because predicting the reward does not change anything.) This implies a vacuous decoder D = I.
When combined, these predict P™ A. However, @ is not linear in A by assumption and therefore is
not linear in ® = £(A) since elements of £(A) are also elements of A. Therefore, a linear value
function using features £(A) may have nonzero Bellman error. O

5 Additional Results

After learning a policy 7, we can evaluate V; exactly since there are just 203 states. Subsequently,

we have
Actual return = Z Ve (8) bo(s),

where by corresponds to a uniform distribution. Figure A1 shows the actual returns for different
algorithms, where the “optimal” curve is obtained by solving the MDP.
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Figure Al: Actual return as a function of the number of training episodes, in the Blackjack problem.
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