Linear Feature Encoding for Reinforcement Learning Supplemental Materials

Zhao Song, Ronald Parr[†], Xuejun Liao, Lawrence Carin

Department of Electrical and Computer Engineering

† Department of Computer Science
Duke University, Durham, NC 27708, USA

1 Proof of Lemma 2

Proof: We start from the linear model solution and proceed as follows:

$$\mathbf{w} = (I - \gamma P_{\Phi}^{\pi})^{-1} r_{\Phi}$$

$$= (I - \gamma (\Phi^{T} \Phi)^{-1} \Phi^{T} P^{\pi} \Phi)^{-1} (\Phi^{T} \Phi)^{-1} \Phi^{T} R$$

$$= (\Phi^{T} \Phi - \gamma \Phi^{T} P^{\pi} \Phi)^{-1} \Phi^{T} R = \mathbf{w}_{\Phi}^{\pi}.$$

where the penultimate substitutes the definition of r_{Φ} and P_{Φ}^{π} in (3a) and (3b) of the main text, respectively.

2 Proof of Theorem 3

Proof: The Bellman error in the context of linear value functions can be represented as

$$BE(\widehat{Q}^{\pi}(s,a)) = R(s,a) + \left[\gamma \sum_{s',a'} P^{\pi}(s',a'|s,a) \Phi(s',a') \mathbf{w}_{\Phi}^{\pi}\right] - \Phi(s,a) \mathbf{w}_{\Phi}^{\pi}$$
(A1)

We proceed to represent (A1) in its corresponding matrix form as

$$BE(\widehat{Q}^{\pi}) = R + \gamma P^{\pi} \Phi \mathbf{w}_{\Phi}^{\pi} - \Phi \mathbf{w}_{\Phi}^{\pi}$$
(A2)

Plugging (5) of the main text into (A2), we have

$$BE(\widehat{Q}^{\pi}) = R + \gamma P^{\pi} \Phi \mathbf{w}_{\Phi}^{\pi} - \Phi \mathbf{w}_{\Phi}^{\pi}$$

$$= (\Delta_{R} + \Phi r_{\Phi}) + \gamma (\Delta_{\Phi}^{\pi} + \Phi P_{\Phi}^{\pi}) \mathbf{w}_{\Phi}^{\pi} - \Phi \mathbf{w}_{\Phi}^{\pi}$$

$$= \Delta_{R} + \gamma \Delta_{\Phi}^{\pi} \mathbf{w}_{\Phi}^{\pi} + \Phi r_{\Phi} - \Phi (I - \gamma P_{\Phi}^{\pi}) \mathbf{w}_{\Phi}^{\pi}$$

$$= \Delta_{R} + \gamma \Delta_{\Phi}^{\pi} \mathbf{w}_{\Phi}^{\pi} + \Phi r_{\Phi} - \Phi (I - \gamma P_{\Phi}^{\pi}) \mathbf{w}$$

$$= \Delta_{R} + \gamma \Delta_{\Phi}^{\pi} \mathbf{w}_{\Phi}^{\pi}.$$

The penultimate step follows from Lemma 2, and the last follows equation (4b) of the main text. \Box

3 Proof of Theorem 7

Proof: Equation (6) of the main text implies that there exist perfect linear predictors of the reward and the expected next state, given $\Phi = AE_{\pi}$. Specifically, we pick $P_{\Phi}^{\pi} = D_{\pi}^{s}E_{\pi}$ and $r_{\Phi} = D_{\pi}^{r}$. Next, we have

$$\Delta_{\Phi}^{\pi} = P^{\pi} \Phi - \Phi P_{\Phi}^{\pi} = P^{\pi} \Phi - A E_{\pi} D_{\pi}^{s} E_{\pi}
= P^{\pi} \Phi - P^{\pi} A E_{\pi} = P^{\pi} \Phi - P^{\pi} \Phi = 0$$

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

and

$$\Delta_R = R - \Phi r_\Phi = R - A E_\pi D_\pi^r = R - R = 0$$

From Theorem 3, this implies zero Bellman error.

4 Proof of Theorem 8

Proof: Consider an MDP for which the Q and P^{π} are *not* linear in A. This would be the typical case in which one would wish to use a neural network or other non-linear approximation method. P^{π} can be deterministic so that $P^{\pi}A$ is a matrix of raw encodings of actual states, not mixtures. Assume k=l and pick $\mathcal{E}=P^{\pi}$, i.e., pick a vacuous encoder. (For this example we will ignore the reward because predicting the reward does not change anything.) This implies a vacuous decoder D=I. When combined, these predict $P^{\pi}A$. However, Q is not linear in A by assumption and therefore is not linear in $\Phi=\mathcal{E}(A)$ since elements of $\mathcal{E}(A)$ are also elements of A. Therefore, a linear value function using features $\mathcal{E}(A)$ may have nonzero Bellman error.

5 Additional Results

After learning a policy π , we can evaluate V_{π} exactly since there are just 203 states. Subsequently, we have

$$\text{Actual return} = \sum_{s} V_{\pi}(s) \, b_0(s),$$

where b_0 corresponds to a uniform distribution. Figure A1 shows the actual returns for different algorithms, where the "optimal" curve is obtained by solving the MDP.

Figure A1: Actual return as a function of the number of training episodes, in the Blackjack problem.