Sparse Stochastic Inference for Latent Dirichlet Allocation

David Mimno1, Matthew D. Hoffman2, David M. Blei1

1Dept. of Computer Science, Princeton U.
2Dept. of Statistics, Columbia U.

Presentation led by Miao Liu

March 7, 2013
1 Introduction

2 Hybrid Stochastic-MCMC Inference

3 Related Work

4 Empirical Results
• A hybrid algorithm for Bayesian topic models
 • sparse Gibbs sampling to estimate variational expectation of local variables (efficiency)
 • online VB to update the variational distribution of global variables (scalability)
• Applications: find large numbers of topics in massive collections of documents
 • 1.2 million books
 • 33 billion words
Latent Dirichlet Allocation (Blei et al., 2003)

- **Notations**
 - α: the parameter of Dirichlet prior on the per-document topic distribution
 - β: the parameter of Dirichlet prior on the per-topic word distribution
 - θ_i: the topic distribution for document i
 - ϕ_i: the word distribution for topic k
 - z_{ij}: the topic for the jth word in document i
 - w_{ij}: the specific word

- **The generative process**

\[
\theta_i \sim \text{Dir}(\alpha), \quad \text{where} \quad i \in \{1, \cdots, M\} \quad (1)
\]

\[
\phi_k \sim \text{Dir}(\beta), \quad \text{where} \quad k \in \{1, \cdots, K\} \quad (2)
\]

For each of the words w_{ij}, where $j \in \{1, \cdots, N_i\}$

\[
z_{ij} \sim \text{Multinomial}(\theta_i), \quad w_{ij} \sim \text{Multinomial}(\phi_{z_{ij}}) \quad (4)
\]
Online LDA (Hoffman et al. (2010))

Algorithm 2 Online variational Bayes for LDA

Define $\rho_t \triangleq (\tau_0 + t)^{-\kappa}$
Initialize λ randomly.
for $t = 0$ to ∞ do
 E step:
 Initialize $\gamma_{tk} = 1$. (The constant 1 is arbitrary.)
 repeat
 Set $\phi_{twk} \propto \exp\{\mathbb{E}_q[\log \theta_{tk}] + \mathbb{E}_q[\log \beta_{kw}]\}$
 Set $\gamma_{tk} = \alpha + \sum_w \phi_{twk} n_{tw}$
 until $\frac{1}{K} \sum_k |\text{change in } \gamma_{tk}| < 0.00001$

 M step:
 Compute $\tilde{\lambda}_{kw} = \eta + D n_{tw} \phi_{twk}$
 Set $\lambda = (1 - \rho_t) \lambda + \rho_t \tilde{\lambda}$.
end for

- pros
 - less memory
 - faster convergence
- does not scale to large number of topics
Hybrid Stochastic-MCMC Inference

- Sampling: a second source of stochasticity for the gradient
- Marginalize out the topic proportions θ_d
- Corpus-level global variables: K topic-word distributions β_1, \cdots, β_K over the V-dimensional vocabulary.
- Document-level local variables: For a document d of length N_d
 - θ_d
 - $z_d = (z_{d1}, \cdots, z_{dN_d})$
- variational distribution
 $q(z_1, \cdots, z_D, \beta_1 \cdots, \beta_K) = \prod_d q(z_d) \prod_k q(\beta_k)$.
 - $q(z_d)$ is a single distribution over the K^{N_d} possible topic configurations
- The VB lower bound

$$\log p(w | \alpha, \eta) \geq \sum_d \mathbb{E}_q \log \left[p(z_d | \alpha) \prod_i \beta_{z_{di}w_{di}} \right] + \sum_k \mathbb{E}_q \log p(\beta_k | \eta) + \mathcal{H}(q)$$

(5)
• The optimal variational distribution over topic configurations for a document, holding all other variational distribution fixed

\[
q^*(z_d) \propto \exp \left\{ \mathbb{E}_{q(-z_d)} \left[\log p(z_d|\alpha)p(w_d|z_d, \beta) \right] \right\}
\]

\[
= \frac{\Gamma(K\alpha)}{\Gamma(K\alpha + N_d)} \prod_k \frac{\Gamma(\alpha + \sum_i I_{z_{di}=k})}{\Gamma(\alpha)}
\]

(6)

(7)

• The hyper parameter of the optimal variational distribution over topic-word distribution, holding the other distributions fixed

\[
\lambda_{kw} = \eta + \sum_d \sum_i \mathbb{E}_q[I_{z_{di}=k}I_{w_{di}=w}]
\]

(8)
Online Stochastic Inference for λ_{kw}

- Recast the variational LB as a summation over per-document terms l_d

$$l_d = \sum_w \left(\mathbb{E}_q[N_{dkw}] + \frac{1}{D} (\eta - \lambda) \right) \mathbb{E}_q[\log \beta_{kw}] + \frac{1}{D} \left(\log \Gamma(\sum_w \lambda_{kw}) - \sum_w \log \Gamma(\lambda_{kw}) \right), \quad (9)$$

- $\sum_d \frac{\partial}{\partial \lambda_k} l_d = \mathbb{E} \left[\frac{D}{|B|} \sum_{d \in B} \frac{\partial}{\partial \lambda_k} l_d \right]$

- $\mathbb{E}_q[N_{dkw}] = \sum_i \mathbb{E}_q[l_{zi=k} l_{w_{di}=w}]$

- The natural gradient (Hoffman et al., 2010)

$$\mathbb{E}_q[N_{dkw}] + \frac{1}{D} (\eta - \lambda_{kw}) \quad (10)$$

- faster convergence
- cheaper computation

- Issue: the natural gradient cannot be directly evaluated (with a combinatorial number of topic configurations z_d).
MCMC within Stochastic Inference

- Solution: use MCMC to sample z_d from $q^*(z_d)$ and the empirical average to estimate $\mathbb{E}_q[N_{dkw}]$
- $q^*(z_{di} = k|z\setminus i) \propto (\alpha + \sum_{j \neq i} I_{z_j=k}) \exp\{\mathbb{E}_q[\log \beta_{kw_{di}}]\}$
- $\mathbb{E}_q[N_{dkw}] \approx \hat{N}_{kw} = \frac{1}{S} \sum_s \sum_{d \in B} \sum_i [I_{z^s_{di}=k} I_{w_{di}=w}]$
- Impacts from MCMC
 1. add stochasticity to the gradient
 2. allows using collapsed objective function that does not represent θ_d
 3. provides a sparse estimate of the gradient (for many words and topics, the estimate of $\mathbb{E}_q[N_{dkw}]$ will be zero)
Previous variational methods lead to dense update to KV topic parameters, which is expensive when K and V are large.

Algorithm 1 exploit the sparsity exhibited by samples from q^*.

Algorithm 1: Algorithm for hybrid stochastic variational-Gibbs inference.

for $t \in 1, \ldots, \infty$ do
\[
\rho_t \leftarrow \left(\frac{1}{t_0 + t} \right)^{\kappa}
\]
sample minibatch \mathcal{B}

for $d \in \mathcal{B}$ do
\[
\text{initialize } z_d^0
\]
discard B burn-in sweeps

for sample $s \in 1, \ldots, S$ do
\[
\text{for token } i \in 1, \ldots, N_d \text{ do}
\]
sample $z_{di}^s \propto (\alpha + N_{di}) e^{\mathbb{E}_q[\log \beta_{kw}]}$
\end{for}
\endfor

end for
\endfor
\[
\lambda_{kw}^t \leftarrow (1 - \rho_t)\lambda_{kw}^{t-1} + \rho_t \left(\eta + \frac{D}{|\mathcal{B}|} \hat{N}_{kw} \right)
\]
end for
Two sources of zero-mean noise in constructing an approximate gradient for VB
- Subsampling the data (SS)
- Monte Carlo inference (MC)

SAEM (Delyon et al., 1999): EM + MC

Kuhn & Lavielle (2004): extends SAEM to MCMC estimates

Online EM (Cappé & Moulines, 2009): EM + SS

Collapsed VB (Teh et al. 2006) also analytically marginalizes over θ_d, but still maintains a fully factorized distribution over z_d

The prosed method does not restrict to such factored distributions, hence reduces bias

Parallelization
Evaluation

- Held-out probability: calculates the marginal likelihood for held out documents using the "left-to-right sequential sampling" (Wallach et al. 2009; Buntine, 2009)
- Topic coherence
 - measures the semantic quality of a topic by approximating the experience of a user viewing the W most probable words for the topic (Mimno et al., 2011)
 - $D(w)$: the number of document containing one or more token of type w
 - $D(w_i, w_j)$: the number of documents containing at least one token of w_i and w_j
 - $C(W) = \sum_{i=2}^{W} \sum_{j=1}^{i-1} \log \frac{D(w_i, w_j) + \epsilon}{D(w_j)}$
 - $C(W)$ is related to point-wise mutual information (Newman et al., 2010)
- Wallclock time
Dataset

- Science/Nature/PNAS articles
 - 350,000 research articles
 - Vocabulary size: 19,000
 - 90% articles for training, 10% for testing

- Pre-1922 books
 - 1.2 million books
 - 33 billion words
Comparison to Online VB (Hoffman et al. 2010)

- Each iteration consists of a mini-batch of 100 documents
- the number of coordinate ascent steps in VB is equal to the number of Gibbs sweeps
- both methods use the same learning schedule
- Standard online VB takes time linear in K

Figure 1. Comparison of seconds per mini-batch between online variational Bayes (Hoffman et al., 2010) and sampled online inference (this paper). Online VB is linear in K, while sampled inference takes advantage of sparsity.
Comparison to Online VB (Hoffman et al. 2010)

The entropy of the topic distributions:
- the proposed method: 6.8 ± 0.46
- online VB: 6.0 ± 0.58

This result could indicate that coordinate ascent over the local variables for online LDA is not converging?
Comparison to Sequential Monte Carlo (Ahmed et al 2012)

- The SMC sampler sweeps through each document the same number of times as the sampled online algorithm.
- The learning rate schedule allows sampled online inference to "forget" its initial topics.
- SMC weights all documents equally.

*Figure 3. Sampled online inference performs better than one pass of sequential Monte Carlo, after processing a comparable number of documents with $K = 200$.***
Effect of parameter settings

- Number of samples: $B + S$
- Topic-word smoothing: η
- Forgetting factors
 - learning rate
 - Size of corpus D

Figure 4. Topic quality is lowest for large values of t_0, but only in small corpora. Panels represent the proportion of training data used. Each panel shows coherence values for five $K = 100$ topic models with varying learning rates.
Table 1. Randomly selected topics from a 2000-topic model trained on a library of 1.2 million out-of-copyright books.

- killed, wounded, sword, slain, arms, military, rifle, wounds, loss, human, Plato, Socrates, universe, philosophical, minds, ethics, inflammation, affected, abdomen, ulcer, circulation, heart, ships, fleet, sea, shore, Admiral, vessels, land, boats, admiral, sister, child, tears, pleasure, daughters, loves, wont, sigh, warm, sentence, clause, syllable, singular, examples, clauses, syllables, provinces, princes, nations, imperial, possessions, invasion, women, Quebec, Women, Iroquois, husbands, thirty, whom, steam, engines, power, piston, boilers, plant, supplied, chimney, lines, points, direction, planes, Lines, scale, sections, extending