Bayesian Learning of Joint Distributions of Objects

Anjishnu Banerjee Jared Murray David B. Dunson

Statistical Science, Duke University

02 May 2014

Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (2013)

Presented by Kyle Ulrich
Motivation

- Dependent data of disparate data types is often observed
 - Real numbers
 - Counts
 - Categorical data
 - More complex objects – functions, shapes, and images

- This domain is known as *mixed domain modeling* (MDM)

- The modelling objectives for these types of observations are diverse
 - Learn dependence between data types
 - Co-clustering
 - Prediction

- Recent interest in modelling such data sets has had a broad focus on joint Dirichlet Process mixture models
Overview

- Review of Sethuraman’s representation of Dirichlet Process
- Joint Dirichlet process mixtures
- Problems with joint DP mixtures
- *Infinite tensor factorization mixture* as an alternative
- Results
The Sethuraman (1994) stick-breaking representation of the Dirichlet process mixture model is written as:

\[
f = \sum_{h=1}^{\infty} \pi_h \mathcal{K}(\theta^*_h) \tag{1}
\]

\[
\pi_h = V_h \prod_{l<h} (1 - V_l) \quad V_h \sim \text{Beta}(1, \alpha) \tag{2}
\]

\[
\theta^*_h \sim P_0 \tag{3}
\]

and an observation \(y_i \sim f \) for subjects \(i = 1, \ldots, N \)

Here, \(\pi = \{\pi_h\} \) is drawn from a stick-breaking process, \(\pi \sim \text{GEM}(\alpha) \)

For efficient computation, a latent variable model is crucial:

\[
y_i \sim \mathcal{K}(\theta^*_{C_i}), \quad \theta^*_h \sim P_0, \quad \text{pr}(C_i = h) = \pi_h \tag{4}
\]

where \(C_i \) is the cluster index for subject \(i \)
Joint Dirichlet Process Mixture (joint DPM)

- Assume we have observations $y_i = \{y_{i1}, \ldots, y_{iJ}\}$ for subjects $i = 1, \ldots, N$
- Furthermore, the elements of $y_i = \{y_{ij}\}$ are potentially drawn from different parametric densities
- We wish to cluster subjects
- The **joint Dirichlet process mixture** (Dunson & Bhattacharya, 2012) is one possible formulation:

\[
y_{ij} \sim K_j(\theta_{C_i}^*), \quad \theta_h^* \sim P_{0j}, \quad \Pr(C_i = h) = \pi_h
\]

(5)

- Two subjects are either allocated to the same cluster *globally*, or not clustered
- *Conditional independence* given a single latent class variable
Problems with Joint DPM Approach

• Underlying problem: conditional independence assumption
• There are several disadvantages to this assumption:
 • To realistically model joint distributions across many variables, unnecessary clusters may be introduced
 • Poor performance for small sample sizes
 • Over-clustering leads to misleading inferences and poor prediction
 • Tends to favor certain components of the data
• Overcome these problems by allowing a separate, but dependent index for disparate data types:

\[
\text{pr}(C_{i1} = h_1, \ldots, C_{ip} = h_p) = \pi_{h_1,\ldots,h_p}
\]

(6)

where \(h_j = 1, \ldots, \infty \) and \(j = 1, \ldots, p \)
• Here, \(\pi = \{\pi_{h_1,\ldots,h_p}\} \in \prod_p^\infty \) is an infinite \(p \)-way probability tensor
Probabilistic Parafac Factorization

- Parafac = parallel factor analysis = canonical polyadic (CP) decomposition = generalization of SVD to tensors
- A possible Parafac tensor factorization of π (Dunson & Xing, 2009):
 \[
 \text{pr}(C_{i1} = h_1, \ldots, C_{ip} = h_p) = \pi_{h_1,\ldots,h_p} \tag{7}
 \]
 \[
 \pi = \sum_{h=1}^{k} \lambda_h \psi_h^{(1)} \otimes \cdots \otimes \psi_h^{(p)} \tag{8}
 \]
 \[
 \lambda \sim \text{GEM}(\alpha) \tag{9}
 \]
 where $C_{ij} \in \{1, \ldots, d_j\}$, d_j is known, and $\psi^{(j)}_h = (\psi^{(j)}_{h1}, \ldots, \psi^{(j)}_{hd_j})^T$ represents the probability vector for component h and outcome j
- What if C_i is unobserved and we allow $d_j \to \infty$?
With a small change, the authors allow infinitely many levels:

\[
\text{pr}(C_{i1} = h_1, \ldots, C_{ip} = h_p) = \pi_{h_1, \ldots, h_p} \tag{10}
\]

\[
\pi = \sum_{h=1}^{k} \lambda_h \bigotimes_{j=1}^{p} \psi_h^{(j)} \tag{11}
\]

\[
\lambda \sim \text{GEM}(\alpha) \tag{12}
\]

\[
\psi_h^{(j)} \sim \text{GEM}(\beta_j) \tag{13}
\]

which is a stick-breaking mixture of outer products of stick-breaking processes

- Elements of \(\pi \) are stochastically larger in the smallest indexed cells
- For shorthand, the above model is written \(\pi \sim \text{ITF}(\alpha, \beta) \)
Here, y_i is drawn from an infinite tensor factorization mixture model:

$$y_{ij} \sim \mathcal{K}_j(\theta^*_{ij})$$ \hspace{1cm} (14)

$$\theta^*_i \sim \sum_{h_1=1}^{\infty} \cdots \sum_{h_p=1}^{\infty} \pi_{h_1,\ldots,h_p} \prod_{j=1}^{p} \delta_{\theta_j,h_j}$$ \hspace{1cm} (15)

$$\pi \sim \text{ITF}(\alpha, \beta)$$ \hspace{1cm} (16)

$$\theta_{j,h_j} \sim P_{0j}$$ \hspace{1cm} (17)

where $\theta^*_i = (\theta^*_{i1}, \ldots, \theta^*_{ip})$

Now, the elements of $y_i = \{y_{ij}\}$ are dependent
Simulated Data Examples

- Data was generated for 1000 individuals comprising of
 - T, a time series
 - R, a multivariate real-valued response ($\in \mathbb{R}^4$)
 - C_1, C_2, C_3, 3 different categorical variables

- In Scenario 1, the entire ensemble (T, R, C_1, C_2, C_3) was drawn from a single component of a 3-component mixture

- In Scenario 2, a dependency structure is introduced

- The goal is to test both prediction and inference of dependency structure

Table 1: Simulation Example, Scenario 1: Prediction error (top), tests of independence (bottom)

<table>
<thead>
<tr>
<th></th>
<th>ITF</th>
<th>DPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1.79</td>
<td>1.43</td>
</tr>
<tr>
<td>C2</td>
<td>31%</td>
<td>23%</td>
</tr>
<tr>
<td>C3</td>
<td>37%</td>
<td>36%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ITF</th>
<th>DPM</th>
<th>“Truth”</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1 vs T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C_2 vs T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C_3 vs T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C_2 vs R</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Simulation Example, Scenario 2: Prediction error (top), tests of independence (bottom)

<table>
<thead>
<tr>
<th></th>
<th>ITF</th>
<th>DPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>4.61</td>
<td>10.82</td>
</tr>
<tr>
<td>C2</td>
<td>27%</td>
<td>55%</td>
</tr>
<tr>
<td>C3</td>
<td>34%</td>
<td>57%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ITF</th>
<th>DPM</th>
<th>“Truth”</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1 vs T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>C_2 vs T</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>C_3 vs T</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>C_2 vs R</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Political Blog Example

- Data collected from 105 political blogs
- Includes the network (web link connectivity), blog's ideology label, and binary indicators for 7 labelling sources

Figure: Left: True clustering. Right: Recovered clustering.
Questions?