Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues

O. L. Mangasarian and E. W. Wild

Presented by: Jun Fang
Outline

1. Conventional Support Vector Machine
2. Proximal Support Vector Machine
3. Multisurface Proximal Support Vector Machine
4. Simulation Results
1. Conventional SVM

We consider the problem of classifying m points $\{x_i\}$ in the n dimensional real space \mathbb{R}^n, represented by the $m \times n$ matrix A.

- Let A^+ denote the points whose membership belongs to class 1; A^- denotes the points whose membership belongs to class 0. D is a diagonal matrix whose i^{th} diagonal entry is the label y_i.

- The conventional SVM with a linear kernel is given by the following quadratic programming problem with parameter $c > 0$

$$\begin{align*}
\text{minimize} & \quad \frac{1}{2}||w||^2 + ce^T \rho \\
\text{s.t.} & \quad D(Aw - be) \geq e - \rho \\
& \quad \rho_i \geq 0, \quad i = 1, \ldots, m
\end{align*}$$ (1)
1. Conventional SVM (Cont.)

Figure 1: The conventional SVM classifier: two parallel bounding planes are devised to approximately separating A^- from A^+.

$$x^T w = b - 1$$

$$x^T w = b + 1$$

Margin = $\frac{2}{\|w\|}$
2. Proximal SVM

A simple and fundamental change to the optimization problem (1) results in the proximal SVM. We replace the inequality constraint by an equality and replace ρ with $\|\rho\|^2$.

The proximal SVM is given by the following optimization problem:

$$\text{minimize} \quad \frac{1}{2}\|w\|^2 + c\|\rho\|^2$$
$$\text{s.t.} \quad D(Aw - be) = e - \rho$$

The planes are not bounding planes any more, but can be thought of as “proximal planes”, around which the points of each class are clustered, and the planes are pushed apart as far apart as possible.

The proximal SVM optimization problem offers an analytical solution.
2. Proximal SVM (Cont.)

Figure 2: The proximal SVM classifier: the two parallel planes are devised so that around which points of the sets $A-$ and $A+$ cluster.
3. Multisurface Proximal SVM

- The multisurface proximal SVM drops the parallelism condition on the proximal planes and require that each plane be as close as possible to one of the data sets and as far as possible from the other one.

- The problem involves seeking two unparallel planes:
 \[x^T w_1 - b_1 = 0 \text{ and } x^T w_2 - b_2 = 0. \]

- To obtain the first plane, minimize the distances between the points in class 0 and the plane, at the same time maximize the distances between the points in class 1 and the plane. This leads to the following optimization problem:

\[
\min_{w_1, b_1} \frac{\|A^- w_1 + b_1 e\|^2 + c(\|w_1\|^2 + b_1^2)}{\|A^+ w_1 + b_1 e\|^2} \tag{3}
\]
3. Multisurface Proximal SVM (Cont.)

Let $G \triangleq [A^- - e]^T [A^- - e] + cI$

Let $H \triangleq [A^+ - e]^T [A^- - e]$, $z \triangleq \begin{bmatrix} w \\ b \end{bmatrix}$

The optimization problem (3) becomes:

$$\min_{z \neq 0} \frac{z^T G z}{z^T H z} \quad (4)$$

The above objective function is known as Rayleigh quotient. Under the condition that H is positive definite, the Rayleigh quotient ranges over the interval $[\lambda_1, \lambda_{n+1}]$ for normalized z, where λ_1 and λ_{n+1} are the minimum and maximum eigenvalues of the generalized eigenvalue problem:

$$G z = \lambda H z \quad (5)$$
3. Multisurface Proximal SVM (Cont.)

- The requirement of H to be positive definite means that the columns of matrix $[A^+ - e]$ are linearly independent.

- The linear independence condition is not restrictive for many classification problems for which $m_0 \gg n$ and $m_1 \gg n$, where m_0 and m_1 denote the number of data points belonging to class 0 and 1, respectively.

- The authors also claim that the linearly independent condition is a sufficient but not necessary condition.

- The second plane $x^T w_2 - b_2 = 0$ can be obtained in a similar way by solving the following optimization problem:

$$
\min_{w_2, b_2} \frac{\|A^+ w_2 + b_2 e\|^2 + c(\|w_2\|^2 + b_2^2)}{\|A^- w_2 + b_2 e\|^2}
$$

(6)
3. Multisurface Proximal SVM (Cont.)

- The above results can be extended to nonlinear multisurface classifiers using kernels. A kernel-based nonlinear surface can be obtained by generalizing (3) to the following:

\[
\min_{u_1, b_1} \frac{\|K(A^-, A^T)u_1 + b_1 e\|^2 + c(\|u_1\|^2 + b_1^2)}{\|K(A^+, A^T)u_1 + b_1 e\|^2} \tag{7}
\]

- The optimization problem (7) can also be solved as (3).

- The multisurface proximal SVM has the following two advantages: first, it is more effective in solving the “cross-plane” problem (Fig. 3); second, for the linear kernel classifier, very large data sets can be handled by multisurface proximal SVM provided the input space dimension \(n \) is moderate in size.
Figure 3: The “cross plane” learned by multisurface proximal SVM and linear proximal SVM respectively.
TABLE 1

Linear Kernel GEPSVM, PSVM [7], and SVM-Light [9]

10-Fold Testing Correctness and p-Values

<table>
<thead>
<tr>
<th>Data Set</th>
<th>GEPSVM Correctness</th>
<th>PSVM Correctness p-value</th>
<th>SVM-Light Correctness p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Planes</td>
<td>98.0%</td>
<td>55.3%*</td>
<td>45.7%*</td>
</tr>
<tr>
<td>300 × 7</td>
<td></td>
<td>5.24671e-07</td>
<td>1.4941e-08</td>
</tr>
<tr>
<td>NDC</td>
<td>86.7%</td>
<td>88.3%</td>
<td>89.0%</td>
</tr>
<tr>
<td>300 × 7</td>
<td></td>
<td>0.244333</td>
<td>0.241866</td>
</tr>
<tr>
<td>Cleveland Heart</td>
<td>81.8%</td>
<td>85.2%</td>
<td>83.6%</td>
</tr>
<tr>
<td>297 × 13</td>
<td></td>
<td>0.112809</td>
<td>0.485725</td>
</tr>
<tr>
<td>Cylinder Bands</td>
<td>71.3%</td>
<td>71.7%</td>
<td>76.1%</td>
</tr>
<tr>
<td>540 × 35</td>
<td></td>
<td>0.930192</td>
<td>0.229676</td>
</tr>
<tr>
<td>Pima Indians</td>
<td>73.6%</td>
<td>75.9%</td>
<td>75.7%</td>
</tr>
<tr>
<td>768 × 8</td>
<td></td>
<td>0.274187</td>
<td>0.380633</td>
</tr>
<tr>
<td>Spambase</td>
<td>76.8%</td>
<td>77.1%</td>
<td>77.1%</td>
</tr>
<tr>
<td>4601 × 57</td>
<td></td>
<td>0.0654478</td>
<td>0.0654478</td>
</tr>
<tr>
<td>Galaxy Bright</td>
<td>98.6%*</td>
<td>97.3%*</td>
<td>98.3%</td>
</tr>
<tr>
<td>2462 × 14</td>
<td></td>
<td>0.031226</td>
<td>0.506412</td>
</tr>
<tr>
<td>Mushroom</td>
<td>81.1%</td>
<td>80.9%</td>
<td>81.5%</td>
</tr>
<tr>
<td>8124 × 22</td>
<td></td>
<td>0.722754</td>
<td>0.356003</td>
</tr>
</tbody>
</table>

The p-values are from a t-test comparing each algorithm to GEPSVM. Best correctness results are in bold. An asterisk (*) denotes a significant difference from GEPSVM based on p-values less than 0.05.
<table>
<thead>
<tr>
<th>Data Set</th>
<th>GEPSVM Correctness</th>
<th>PSVM Correctness</th>
<th>SVM-Light Correctness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Planes 300 x 7</td>
<td>99.0%</td>
<td>73.7%*</td>
<td>79.3%*</td>
</tr>
<tr>
<td>WPBC (60 mo.) 110 x 32</td>
<td>62.7%</td>
<td>64.5%</td>
<td>63.6%</td>
</tr>
<tr>
<td>BUPA Liver 345 x 6</td>
<td>63.8%</td>
<td>67.9%</td>
<td>69.9%</td>
</tr>
<tr>
<td>Votes 435 x 16</td>
<td>94.2%</td>
<td>94.7%</td>
<td>95.6%</td>
</tr>
<tr>
<td>Haberman’s Survival 306 x 3</td>
<td>75.4%</td>
<td>75.8%</td>
<td>71.7%</td>
</tr>
</tbody>
</table>

The p-values were calculated using a t-test comparing each algorithm to GEPSVM. Best results are in bold. An asterisk (*) denotes a significant difference from GEPSVM based on p-values less than 0.05.
<table>
<thead>
<tr>
<th>GEPSVM</th>
<th>PSVM</th>
<th>SVM-Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (seconds)</td>
<td>Time (seconds)</td>
<td>Time (seconds)</td>
</tr>
<tr>
<td>0.96</td>
<td>0.08</td>
<td>75.4</td>
</tr>
</tbody>
</table>