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Combining Information From Related 

Regressions 


Francesca DOMINICI,Giovanni PARMIGIANI, Kenneth H. RECKHOW, and 
Robert L. WOLPERT 

We propose and illustrate an approach for combining information from several re- 
gression studies, each considering only a subset of the variables of interest. Our approach 
uses a combination of Bayesian hierarchical modeling and data augmentation. Hierarchi- 
cal models are a flexible tool for modeling study-to-study as well as within-study vari- 
ability. Data augmentation methods address fully the uncertainty resulting from missing 
data and provide venues for combining information in a way that preserves the mean- 
ing of the regression coefficients across studies. We discuss in detail a nonnal-nonnal 
model. we suggest a simple and efficient numerical implementation based on a block 
Gibbs sampler. and we provide explicit full conditional distributions for an arbitrary 
pattern of variables missing by study. 

We discuss an application of our model to investigating the level of chlorophyll-a 
in water quality management. Chlorophyll-n is one of the most important indicators of 
lake water quality. Scientists have developed a number and variety of forecasting models 
relating chlorophyll-a to nutrients such as phosphorus and nitrogen. These models often 
have to rely on sparse information from multiple sources-in this case lakes. We study 
the relationship among chlorophyll-a and phosphorus in 12 northern temperate lakes by 
using data from the literature. An important covariate is nitrogen. which is reported only 
in some of the studies. 

Key Words: Hierarchical models; Missing covariates: Water quality. 

1. INTRODUCTION 

If there are several studies that address the same research question, one might be 
interested in combining the information from the individual studies in order to draw over- 
all conclusions about the research question of interest. The combining of the individual 
studies in order learn about the whole is referred to in the literature as meta-analysis. 
In this article we focus on meta-analysis of regression studies. In particular, we discuss 
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how to combine several multivariate regression datasets, each recording overlapping, but 
possibly different, sets of variables. This is a common situation: frequently, an initial 
study will identify a potentially interesting relationship between variables. New studies 
are then likely to follow, with more comprehensive designs and more variables, perhaps 
in an attempt to clarify potential confounding effects or biases in the initial study. Interest 
in similar questions from other agencies, technological progress in measuring potential 
explanatory variables, and emergence of new and interesting explanatory variables are 
all likely to lead to more studies with yet different sets of variables. Often, studies have 
multiple endpoints or use different proxies for responses of interest. In practice, mul- 
tistudy regression analyses carried out to support important policy decisions will very 
often require combining studies with different variables. 

The goal of this article is to provide a framework for handling some of the most 
urgent modeling problems arising in the situation just described. Examples are 

1. combining several studies with a common response variable and overlapping, but 
different covariates; 

2. combining studies with the same covariates but different endpoints (responses), 
with the aid of one or more further studies investigating the dependence between 
the endpoints; and 

3. combining multivariate analyses with differing sets of variables. 

Our proposal is based on a combination of hierarchical modeling and data aug- 
mentation techniques. In meta-analysis, an important and well recognized concern is 
modeling variation from study to study, which can arise from differences in the studies' 
subpopulations, data collection protocols, and so forth. Hierarchical models are emerg- 
ing as a flexible and practical modeling strategy, and are widely used in meta-analysis 
(DuMouchel and Harris 1983; DuMouchel 1990; Beny 1990; Eddy, Hasselblad, and 
Shachter 1991; Gatsonis, Normand, Liu, and Morris 1993) and other information synthe- 
sis problems (Moms and Normand 1992; Wolpert and Warren-Hicks 1992; Stangl 1995). 
Studies are thought of as belonging to a population of studies addressing the same re- 
search question. Hierarchical models for regression problems are well understood when 
all studies report the same covariates (Lindley and Smith 1972; DuMouchel 1994). This 
suggests setting up a model based on the full set of predictors and responses recorded 
in at least one of the studies, and treating the variables that are not reported as missing. 
Information on missing variables in each study is provided by recorded variables in that 
study as well as the dependence structure inferred from other studies. 

Advantages of this approach are both methodological and computational. Method- 
ologically, the combination of regression models is carried out in a fashion that preserves 
the interpretation of the coefficient across different studies. Computationally, data aug- 
mentation can be handled conveniently using Markov chain Monte Carlo (MCMC) tech- 
niques (Tanner and Wong 1987; Gelfand and Smith 1990; Tanner 1993; Gilks, Richard- 
son, and Spiegelhelter 1996). The main output of the analysis are posterior distributions 
of parameters and future outcomes of interest. These can be easily marginalized over the 
missing information, uncertainty about which is then addressed in full. 

The outline of the article is as follows. We begin with an elementary example moti- 
vating the need for careful treatment of the missing variables. In Section 2 we introduce 



the model. In section 3 we discuss Markov chain Monte Carlo methods for deriving the 
marginal posterior and predictive distributions of interest, and we provide the full con- 
ditional distributions for implementing a block Gibbs sampler handling general missing 
variables patterns. Finally, in Section 4 we consider an application to investigating the 
relation between chlorophyll-a, phosphorus, and nitrogen in 12 northern temperate lakes 
by using data from several studies in the literature. 

Imagine that studies of the effect of phosphorus on the concentration of chlorophyll- 
a in lakes are available. Studies may adjust for known covariates: the first study corrects 
for the effect of nitrogen, the second corrects for the effect of lake depth, and the third 
corrects for both these effects. We use the notation 

Y = Chlorophyll-a concentration, 

X1 = Phosphorus concentration: 

X2 = Nitrogen concentration, 

X3 = Lake depth. 

Our goal is to combine information from these three studies in order to find a pooled 
estimate of the regression coefficient ,9 for the predictor variable XI. 

Suppose that the four variables Z = [Y,XI,  X2, X3] are, after suitable transforma- 
tions, well-approximated by a joint Gaussian distribution with p = 0 and covariance 
matrix 

The conditional distribution of Y given any set of the Xi 's  are easily computed 
linear functions of the Xi's. Thus, the first study that included phosphorus and nitrogen 
should find approximately 

suggesting that nitrogen is affecting chlorophyll-a, but that phosphorus is not. The second 
study, which used only phosphorus and lake depth, should find approximately 

suggesting that lake depth is an important predictor but that phosphorus is not. The third 
study, which included both concomitant variables, would find approximately 



suggesting that phosphorus is affecting chlorophyll-a, although the first two studies 
agreed in suggesting that f l  rr 0. 

When each study carries complete information, and the combination is based on 
a fixed effects model with equal variance, the combined maximum likelihood estimate 
(MLE) of the coefficients is a weighted average of the MLE's of the regression coef- 
ficients within each study, with the sample sizes as weights. But what happens in the 
presence of incomplete information and unequal variances? This simple combination 
method can be seriously misleading for the following reasons: 

1. If each study includes a different set of covariates, then this makes it almost 
impossible to maintain that the regression coefficients have the same meaning 
and that they are constant over studies. 

2. 	For each study, if the missing covariates are correlated with the observed covari- 
ates, then the MLE obtained from the reduced data is no longer unbiased. 

3. 	If all studies are considered, the individual studies' MLE's are not sufJicient 
statistics for the coefficients in the full model. 

All these objections can be overcome by reparameterizing the problem and expand- 
ing the multivariate regression model to include the uncertain joint distribution of the 
covariates' X ' s  too, rather than only the conditional distribution of Y's given X's .  One 
approach for implementing this strategy in a hierarchical setting is discussed next. 

2. MODEL 

Consider S studies each including nS observations on at most I response variables 
and at most r explanatory variables. We begin by defining the general structure of the 
model under complete information. The analysis in the presence of missing covariates or 
missing response variables is then conducted by conditioning on all observed variables 
and treating the unobserved variables as unknown parameters. 

We indicate the response variables in study s by YS = (Y;, ...,qs) ' ,  the explana- 
tory variables by X S  = ( X f , ...,X,S)': and the complete set of I + r variables by 
Z S  = (Yt....; xS;X f ,  ...,X,S)'. In each study, we model Z s  by a joint multivariate 
normal distribution with mean pSand covariance matrix CS. Complete sample mean and 
covariance matrices will be denoted by ZSand Vs. One implication is that each of the 
I-dimensional vectors of responses YS in study s is modeled as a conditional normal 
distribution given XS.Partitioning the study-specific parameters as 

we have that 



- 1  .
for s = 1 ,  . . . , S.Here, B S  = CE,C$, is the matrix of regression coefficients for study s. 

In general, it is restrictive to assume that study parameters are homogeneous across 
studies. However, it is reasonable to assume that they are sufficiently similar to be thought 
of as belonging to some common distribution. In this article, we model this by assuming 
that pS are exchangeable draws from a normally distributed population with mean p* 
and covariance matrix I?*,and that Cs are exchangeable draws from an inverse Wishart 
distribution with w degrees of freedom and mean C*. Some of the parameters of the 
distribution describing the population of studies (in our case p*, r * ,  and C*) will be 
unknown and will be assigned a prior distribution. 

In summary, our assumptions define the following hierarchical model: 

Stage I: 2" p\ ,C - N1+, ( Z S I pS ,  $ C S )  
V s  / Wl+, ( V S  1 (ns I ) ,C s )C" -

Stage 11: pS I p*, F* N1+, ( p s  1 p*, I?*) 
C S I C* - IW1+, (C" I w ,  C * )  ; 

Stage 111: P* - NL+,( P *  1 m . M )
r* I ~ V ~ + T  1(r* g ,  G )  
C* - W1+,(C* I a , D ) .  

Here, studies are assumed to be independent conditional on p*, I?*, and C*.The quantities 
w ,  m, M ,  g,  G ,  a ,  and D are known hyperparameters. We use the notation IWL+,(F I 
g, G )  to denote the inverse Wishart density proportional to 

where g will be referred to as the degrees of freedom and the ( I  + r )  x ( 1  + r )  positive 
definite matrix G as the scale matrix. Similarly, we use the notation W1+,(C 1 a ,  D )  to 
denote the Wishart distribution with density proportional to 

Again, a will be referred to as the degrees of freedom and the ( I  + r )  x ( 1  + r )  positive 
definite matrix D as the scale matrix. 

Interest is both in the studyspecific (stage 11) parameters and in the population 
(stage 111) parameters. The stage I1 parameters ps and C s  represent the location and 
the covariance structure of the 1 + r variables for the sth study. Inference on stage 
11 parameters based on a model like ours is often preferable to separate analyses of 
individual studies, because of the well known "borrowing of strength" resulting from the 
hierarchical structure. Inference on stage I11 parameters represents a synthesis of the S 
studies and may have an intrinsic scientific importance. For example, in Section 4 we 
consider the effect of phosphorus and nitrogen on the concentration of chlorophyll-a in 12 
lakes; each study corresponds to a lake. In this case, from the distributional assumptions 
at the third stage, we have E ( p S )= p*, E(Cs)  = ( l / ( w- 2 ) ) C*. Therefore, p* and 
C* determine the location and the correlation structure of the three variables on average 
over all the lakes. In addition, given that the observations in each study are recorded at 



the same location over time, we can interpret C* also as a temporal covariance structure 
common to all lakes. Finally, I?* measures the variability and the covariance of the 
location parameter ps with respect to the overall mean p* and can be viewed as a spatial 
covariance between lakes. 

In the presence of multiple datasets it is often of interest to estimate parameters 
in regression models. In particular, we are interested in the posterior distribution of the 

-1
regression coefficients for the lake s, denoted by BS= C;,Cg, , and of the regression 

coefficients synthesis over all the lakes, denoted by B* = Cz:,:C$' .  

Consider now the situation where some of the variables are missing. We assume 
here that the presence or absence of a variable in a study is unrelated to the value of both 
the missing and observed variables. In other words, we assume that the variables are 
missing completely at random (Rubin 1976).For each study, we rearrange the vector Z s  
so that it can be written as ( W S ,U s ) ,where W Sdenotes the vector of the pS variables 
that are present in study s, and U s  denotes the vector of the remaining qs = ( I  +r )-ps 
variables that are missing in study s. Both W sand U s  can include responses as well as 
explanatory variables. The following decomposition of the study specific parameters is 
useful: 

The dimensions of these subvectors and submatrices depend on the number of variables 
recorded in study s; in particular, p& and p i  are vectors of dimensions ps and qS ,and 
EL,, E;,,, C;,, and C;, are matrices of dimension pS x pS,  pS x qS,  qS x pS,  and 
qS x qS.  

Because of the normality assumption at the first stage, the conditional distribution of 
the unobserved variables given the observed variables and the study-specific parameters, 
within each study, is 

Using this framework, we can draw inferences on any of the unknowns using the 
posterior distribution 

Inference on the parameters of interest p* and C* can be based on computing marginal 
distributions. Neither the posterior distribution (2.1) nor its marginal distributions are 
available in closed form in this case. However, practical algorithms for simulating from 
(2.1) can be based on Markov chain Monte Carlo schemes, discussed next. 



A practical choice for simulating from the joint posterior distribution (2.1) is to 
use a block Gibbs sampler (Gelfand and Smith 1990). This is based on partitioning the 
unknowns into groups and sampling each group in turn given all others. This requires 
the so-called full conditional distributions that are given explicitly next. 

Define US = (CS)-', p = $ (pl  + ... + ps) U = U1 + ... + US, then, 

p* 1 r * . p l . . . . p  - Nl+r (p* I [ ~ r * - '+ M-'1 

S 

r*I p1 . . . .pS - IWl+r r*1 g + S,x ( p s  - p*)(ps- p*)' + G 
s=l 

Z* 1 U - Wl+, (C* I a + S W ,[U + D-'1 - I )  

CS I VS, C* - IWl+r(CS I w + nS - 1,VS+ C*) 

The full distribution of US reflects all the uncertainty arising from the missing 
variables. In a practical implementation it is used to simulate each of the nS missing 
observations. The derivation of these distributions is routine (e.g., see Bernardo and 
Smith 1994) and is not discussed here. 

3. CHLOROPHYLL-PHOSPHORUS RELATIONS IN LAKES 

In this section, we apply the hierarchical model of Section 2 to investigating the 
relation between chlorophyll-a, phosphorus, and nitrogen in lakes. Chlorophyll-a is one 
of the most widely measured and predicted indicators of lake water quality. It serves as 
a measure of the density of algal cells and also reflects the "greenness" or clarity of the 
water in a lake. Higher concentrations of chlorophyll-a are associated with higher algal 
densities and poorer water quality (a condition called "eutrophication"). 

The nutrients phosphorus and nitrogen stimulate the growth of algae and, hence, are 
indicators, or predictors, of the potential for algal growth. As a consequence, scientists 
have developed a number and variety of simulation and forecasting models relating 
phosphorus and nitrogen to chlorophyll-a (see Reckhow and Chapra 1983). These models 
are extensively used by scientists and engineers to guide lake management. 

Our investigation is based on data for 12 of the northern temperate lakes, reported 
by Smith and Shapiro (1981), who also gave background and motivation. Their analysis 
suggests that reductions in total phosphorus (TP) concentration in the lakes are generally 



Table 1. Summary of the Variables Recorded in Each of the 12 Lakes Under Study, and Correspond-
ing Sample Sizes 

Lake 1 2 3 4 5 6 7 8 9 10 11 12 

c J J J J J J J J J J J  J  
TP J J J J J J J J J J J  J  
TN J J J J J J J J J  J 
n 1 6 8 4 7 4 4 4 1 0 6 6 3 2 

NOTE: Each column represents a lake. A check mark indicates that the variable 
was recorded. 

accompanied by consistent declines in algal biomass, as measured by chlorophyll-a (C). 
However, the amount of such decline tends to vary from lake to lake. The data also 
suggest that chlorophyll-a's response can be expected whether algal growth in a lake 
is phosphorus-limited or nitrogen-limited, although the magnitude of the response may 
differ. Also, not all studies report total nitrogen concentration (TN), and sample sizes 
within each lake are small. 

The present hierarchical methodology provides an effective strategy to build a global 
model to assess the effect of phosphorus in a heterogeneous population of lakes, and to 
accomodate the fact that TN is not always reported. In particular, our assessment of the 
chlorophyll-phosphorus relations in individual lakes takes into account that 

it is necessary to include in the analysis the effect of the nitrogen, even though 
some studies do not report nitrogen levels; 
it is of interest to investigate both the geographical and temporal dependencies 
between the variables and to model those separately, as temporal variation is more 
strongly related to human intervention; and 
it can be important to provide a predictive distribution for the effect of phosphorus 
concentration reduction in northern temperate lakes not included in the sample. 

We consider the following 12 related regression models: 

log(C) = 3; + 3; log(TP) + Bs log (%) l 

s =  l . . . .  

The choice of the logarithmic scale is common in this application (Smith and Shapiro 
1981). Using log(TN/TP) to model the effect of nitrogen is intended to reduce correlation 
between the two explanatory variables and to improve the stability of estimated coeffi-
cients. Mathematically, the model is equivalent to one including log(TP) and log(TN) 
as explanatory variables. 

We used dispersed prior distributions to let the observed data drive the conclusions 
of the data analysis. Our prior distributions are all proper. The hyperparameters were 
chosen to reflect basic scientific knowledge of the allowable ranges of the observations. 
In practice, we specified a plausible range for each of the coefficients and chose prior 
densities that would vary at most by a factor of 2 within the range. The values used 
are given in the Appendix. The implied prior distributions on the level I11 regression 
coefficients B* are indicated by the dashed lines in Figure 4. 



Using the Gibbs sampler of Section 3, we obtained a sample from the joint posterior 
distribution of all unknown quantities 

Samples of the vectors BS of regression coefficients in each of the 12 lakes and of 
the vector B* of overall regression coefficients can be obtained simply by variable 
transformation on the sampled parameters. The transformations are defined in Section 2. 

Figures 1 and 2 summarize point inference about the regression coefficients. The 
thicker lines are the regression lines implied by the posterior mean of the stage I11 co-
efficients B*, for a fixed value of the concomitant variable. There are also two shorter 
lines for each lake, ranging from the smallest to the largest phosphorus level in the study. 

LOG PHOSPHORUS 

Figure 1. Summary of Point Inference About the Regression Coeficient of log(C) and log(TP). Thicker line is 
regression line given by posterior mean of stage 111 coeficients B*. Value of log TN/TP isfvted at its mean value, 
2.71. Shorter lines refer to the lake-specijic regression coeficients. Shorter solid lines are based on posterior 
means; dashed lines are based on ordinary least squares estimators. Line thickness is proportional to the square 
root of the number of observations in the lake. 



Figure 2. Point Inference About the Regression Coefficient of log(C) and log TN/TP. Thicker line is regression 
line implied by posterior mean of stage 111coefficients B*. Value of log TP i s f i e d  at its mean value, 3. Shorter 
lines refer to lake-specific regression coefticients. Shorter solid lines are based on posterior means and dashed 
lines are based on ordinaly least squares estimators. Line thickness is proportional to the square root of the 
number of observations in the lake. 

Solid lines are based on posterior means of lake-specific regression coefficients, and 
dashed lines are based on the ordinary least squares estimator. Dashed lines are miss- 
ing for the studies that did not report TN. The line thickness is proportional to the 
square root of the number of observations in the lake. From Figure 1, the coefficients 
of the chlorophyll-a-phosphorus relations (i.e., the slope of the short lines) appear to be 
relatively stable across lakes, even though the ranges of the observations vary substan- 
tially. In Figure 2, coefficients appear more variable, indicating that the TN/TP ratio 
has a more variable effect across lakes, possibly a slight indication of a nonlinear rela- 
tion. This is made more pronounced by the presence of one extreme observation with 
log(TN/TP) = 4.27 in lake 6. The second largest value in lake 6 is 3.58, and there are 
only 4 observations, indicating that the evidence in favor of nonlinearity from lake 6 is 
less strong than the display suggests. The change in slope may also be indicative of a 
limiting nutrient mechanism (Kaiser et al. 1994). A nonlinear transformation of one of 



Figure 3. Boxplots of Samples From the Posterior Distributions of Lake-Specific Regressions Coeficients BS.  
For comparison, samples from the marginal posterior distributions of the corresponding element of B* are 
displayed at far right. 

the covariates, capturing such a mechanism, could be accommodated in our framework. 
A further strategy for extending our framework is to model the coefficients as a function 
of lake-specific covariates as in Wong and Mason (1985). 

Figure 3 displays the posterior distributions of the coefficients Bsfor the 12 lakes. 
Lakes 2 and 3 have a more dispersed distribution as a result of the missing nitrogen 
measurement. In addition, lake 3 has a limited number of observations. The distribution 
of lake 6 is also more dispersed, because of the discrepancy between the observations 
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Figure 4. Comparison of Prior and Posterior Distribution on Individual Components of B* 

for that lake-suggesting a negative slope-and the overall tendency. For comparison, 
the marginal posterior distributions of the corresponding element of B* are displayed at 
the far right. B* represents the mean of the population of lake specific coefficients BS.  
Figure 4 focuses on the marginal distributions of the elements of B* and shows both the 
prior and posterior distributions. It emphasizes that the effect of the data is strong even 
on stage I11 parameters. Figure 5 shows the joint distribution of ,B; and ,B2*, highlighting 
the correlation between the two estimated coefficients. Accounting for such correlation is 
especially important in computing the predictive distribution for measurements in lakes 
not included in the sample. 



Figure 5. Sample From the Joint Posterior Distribution of 13; and 3; 

The spatial variability of measurements from lake to lake is captured by the matrix 
r*.Margi- nal distributions of the elements of I?* are shown in Figure 6. A large diagonal 
element signifies large lake-to-lake variability in the corresponding measurement, while a 
large off-diagonal element signifies a large spatial correlation between the two variables. 
Elements of T*can themselves be correlated in our model. All pairwise joint posterior 
distributions of elements of I?* are shown in Figure 7. 

Similarly, the matrix C* represents the variability of measurements over time. Margi- 
nal distributions of the elements of C* are shown in Figure 8. A large diagonal element 
signifies large variability over time in the corresponding measurement, on average over 
lakes. A large off-diagonal element signifies a large average temporal correlation between 
the two variables. All pairwise joint posterior distributions of elements of C* are shown 
in Figure 9. 

Finally, Figure ?? shows the predictive distribution of C given three levels of TP for 
fixed TN for a hypothetical 13th lake randomly selected from northern temperate lakes. 
This distribution accounts fully for the uncertainty in parameter estimation and missing 
covariates, as well as for lake-specific noise in the 13th lake. 



Figure 6. Boxplots of Samples From the Marginal Posterior Distributions of the Elements of I?*. Boxplots are 
arranged as the corresponding elements in the matrix. Boxplots above the diagonal refer to covariances and 
below the diagonal to correlations. Large diagonal element signifies a large variability in the corresponding 
measurement from lake to lake. Large off-diagonal element signifies a large spatial correlation between the two 
variables. 



Figure 7. Scatterplots of Sample Points From the Elements of r'. 



Figure 8. Boxplots of Samples From the Marginal Posterior Distributions of the Elements of C*. As in Figure 6, 
boxplots above the diagonal refer to covariances and boxplots below the diagonal to correlations. Large diagonal 
element signifies a large variability in the corresponding measurement over time, on average over lakes. Large 
off-diagonal element signifies a large temporal correlation between the two variables over time, on average over 
lakes. 



Figure 9. Sccrtterplots of Scrmple Points From All Paincise Joint Posterior Disrrihrrt~ons of Elernent.~ of C - .  



LOG PHOSPHORUS 

Figure 10. Predictive Distribution of log C for Three Levels of TP in a Hypothetical 13th Lake Randomly 
Selected From Northern Temperate Lakes. Level of lo,y(TN/TP) is set at its mean value, 2.71. 

4. DISCUSSION 

In this article, we considered the problem of combining information from several 
regression studies, each considering only a subset of the variables of interest. We ap- 
proached the problem using Bayesian hierarchical models. These combine flexibility in 
modeling study-to-study and within-study variability with reliable computational algo- 
rithms for variance components and imputation of missing values. We provided full 
conditional distributions for the implementation of a Gibbs sampler, useful for arbitrary 
patterns of variables missing by study. 

The situation of interest in this study, missing covariates in the context of multiple 
studies addressing a common issue, is encountered frequently in water quality research 
and assessment. With respect to chlorophyll-a prediction, it is not uncommon to have 
data on a set of lakes with data missing for one or more of the predictor variables for one 
or more of the studies (the situation encountered here). Furthermore, scientists recognize 
that although every lake has unique features, each also has common features that can be 
exploited with the hierarchical analysis presented here. These conditions hold for other 
predictions of interest in lake studies, such as prediction of nutrient concentrations as a 



function of watershed and hydrologic variables (Reckhow and Chapra 1983), prediction 
of fish population response to lake acidification (Wolpert and Warren-Hicks 1993), and 
assessment of lake trophic state (Reckhow and Chapra 1983). 

We conclude with some potential extensions of this work. First, the general strategy 
of combining hierarchical models and data augmentation can be applied beyond normal 
distributions and linear models. Although Gibbs samplers may not be always be avail- 
able, other MCMC simulation algorithms can be implemented (Tierney 1994). Similar 
considerations apply to more complex modeling of the relation between nutrients and 
chlorophyll-a, such as limiting nutrient models (Kaiser 1994). Next, our treatment of 
missing variables is based on the assumption that both the covariates and the response 
variables are random. Missing covariates are also common in designed experiments, such 
as clinical trials or toxicity studies for risk assessment. If the variables that are fixed by 
design are present in all studies, our approach can be applied with small modifications. 
Otherwise, predicting a missing design variable based on the observed ones is in gen- 
eral inappropriate. Also, our results and algorithms are based on the assumption that 
no information is camed by the absence of a certain covariate in a study. This is an 
important assumption and could be problematic if predictors had been initially recorded 
and then eliminated from a study based on a preliminary exploratory analysis or vari- 
able selection. It is possible to extend our modeling strategies to handle such censored 
information by incorporating the variable selection mechanism in the imputation of the 
missing variables. Finally, we assumed throughout that the study's means and covariance 
matrices are available for analysis. Meta-analysis of regression studies requires different 
approaches when more limited information, such as significance test results, is reported. 

APPENDIX 

The values of the hyperparameters used in our model are as follows: w = 3,g = 

3; a = 2.5, and 

This implies that the diagonal elements are Gamma(3, 18). 

m = (4.6,5.5, -1.94). 


This choice of m and M lead a range of (-5,5) for the mean of log(TN/TP) with 75% 
of coverage. 

1.6 .96 .16 

This implies that the diagonal elements are IGamma(2.5,4) 
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