Demystifying Information-Theoretic Clustering

Greg Ver Steeg, Aram Galstyan, Fei Sha and Simon DeDeo

(ICML 2014)
Discussion by: Chunyuan Li

August 7, 2015
Outline

- Information theory in clustering
- Proposed method: Consistency Violation Ratio
- Experimental results
Information-theoretic clustering

Information-theoretic (IT) criteria
- Given samples drawn i.i.d. from a known distribution
- Shannon entropy: minimum number of bits needed to encode the samples

Clustering
- Given samples of an unknown distribution,
- We would like to label (encode), each sample to reflect some natural structure

This paper: Compression \neq Clustering
Even if we knew the Shannon entropy of the distribution, a code that achieves this optimal compression does not necessarily reflect the natural structure of the underlying distribution.
Reminder of basic IT concepts

- Entropy: $H(X) = \mathbb{E}\left[\log \frac{1}{p(x)}\right]$
- Mutual information (MI):
 $$I(X;Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

This paper: **Conditional Entropy, not Mutual information (MI)**

MI determines how similar the joint distribution $p(X, Y)$ is to the products of factored marginal distribution $p(X)p(Y)$

![Venn Diagram of Information Theory Concepts](image)
Pitfalls of IT clustering

- **Discrete case**
 Re-ordering of bins does not affect any IT quantity because they depend only on the values p_i.

- **Continuous case**
 $I(X; Y) = H_0(\alpha/(\alpha + \beta))$, it reaches its maximum when splitting the space into two equally sized masses of probability
What does maximizing MI tell us? \(I(X; Y) = H(Y) - H(Y|X) \)

- \(H(Y) \) is maximized for equally sized clusters.
- \(H(Y|X) \) should be 0 for any exact partitioning of the input space.
- These two terms compete.

In practice, entropy is estimated according to density. The non-parametric estimator is based on k-nn.

Uncertainty comes from the case near the boundary between the two clusters.

The percentage of points near the boundary will decrease as \(N \) increases.
Mystery about the empirical success

- When N is small
 - Natural clustering is preferred
- When N is large
 - Equal-sized clusters will be preferred
- More data leads to a less desirable result
- Tests with previous information-theoretic clustering objectives focused on small, nearly balanced datasets, so that these shortcomings went unnoticed.
Coarse-Graining

- Clustering is a coarse-graining
- Shannon’s Axiom of Consistency under Coarse-Graining: Uncertainty should grow with k if there are k equally likely events, e.g.
 - Discrete case
 \[h(p_1, p_2, p_3) = h(p_1, p_2 + p_3) + (p_2 + p_3) h(p_2/(p_2 + p_3), p_3/(p_2 + p_3)) \]
 - Continuous case
 \[H(p(x)) = H(p(y)) + p(y = 0)H(p(x|y = 0)) + p(y = 1)H(p(x|y = 1)) \]
- For $y = f(x)$, it implies
 \[H(X) = H(X|Y) + H(Y) \]
- Start with an unbiased estimator and search for coarse-grainings that lead to consistent entropy estimates. These coarse-grainings are called as natural.
Consistency Violation (CV)

\[CV = \hat{H}(Y) + \hat{H}(X|Y) - \hat{H}(X) \] (1)

- CV as a measure of how well we can estimate the global entropy given the entropy of clusters of data points
- RHS also recovers \(\hat{H}(Y|X) = \hat{H}(Y) + \hat{H}(X|Y) - \hat{H}(X) \)
- Advantages
 - The estimated uncertainty about cluster labels will be as low as possible, even for small amounts of data
 - The coarse-graining will be natural in the sense that we do not violate information-theoretic axioms

\[x_2 \]

\[CV=0 \]

\[CV=0.13 \]
Entropy estimation

- **Nonparametric estimator**
 - \(H(\mathbf{X}) = \mathbb{E}[\log \frac{1}{p(x)}] \approx \frac{1}{N} \sum_{i=1}^{N} [\log \frac{1}{p(x^{(i)})}] \approx \frac{1}{N} \sum_{i=1}^{N} [\log \frac{\epsilon_{i,k}}{k/N}] \)
 - \(\hat{H}(\mathbf{X}) \approx \log \frac{N}{k} + \frac{d}{N} \sum_{i=1}^{N} [\log \epsilon_{i,k}] + c_{k,N} \)
 - \(c_{k,N} \): a constant factor

- **Nonparametric estimation of conditional entropy**

\[
\hat{H}(Y|X) = \frac{d}{N} \sum_{i=1}^{N} \log \frac{\bar{\epsilon}_{i,k}}{\epsilon_{i,k}}
\] \((2) \)

- **Example:**
 - green line: \(\epsilon_{i,k} \)
 - dark line: \(\bar{\epsilon}_{i,k} \)
Conditional entropy for clustering

CV is expected to be small under arbitrary resampling with limited data.

By considering all possible resamplings with \(\alpha \),

\[
\hat{H}_{\alpha,k}(Y|X) = \mathbb{E}_\alpha[\hat{H}_k(Y|X)]
\]

(3)

where \(\alpha \) is an independent probability for each point to be removed.

Total consistency violation

\[
\hat{H}_{\alpha,k}(Y|X) = \int_0^1 d\alpha \hat{H}_{\alpha,k}(Y|X)
\]

(4)

Define \(\hat{H}_T(Y|X) \equiv \hat{H}_{\alpha,k=1}(Y|X) \) We can search for partitions that minimize the Consistency Violation Ratio (CVR)

\[
\hat{H}_T(Y|X) / \hat{H}(Y)
\]

(5)
Experiment 1: Test CVR with N

- **Setup**
 - 2 uniform distributions in 1D (slide 5, (b))
 - (a) $N = 30$, (b) $N = 90$.

- **Results**
 - Adding more data does not make the clusters harder to distinguish.
Experiment 2: Compare CVR with others

- **Setup**
 - 2 uniform distributions in 2D
 - Other objective functions, including MI and Nonparametric Information Clustering (NIC) (Faivishevsky et al. 2010)
 - $r^* = \arg\max_{r} \text{Objective}(Y_r, X)$

- **Results**
 - CVR is the only objective to prefer the correct partition over a wide range of parameter values