Distributed Algorithms for Topic Models
and
Distributed Stochastic Gradient MCMC

+David Newman, Arthur Asuncion, Padhraic Smyth, Max Welling

*Sungjin Ahn, Babk Shahbaba, Max Welling

Presented by Changyou Chen
March 6, 2015
Outline

1. Distributed Algorithms for Topic Models
 - Distributed LDA and HDP
 - Experiments

2. Distributed Stochastic Gradient MCMC
 - The Algorithm
 - Experiments
Distributed Algorithms for Topic Models

LDA and HDP

\(\phi_k\): topic-word distributions; \(\theta_j\): topic proportion; \(X_{ij}\): words

LDA (left):

\[\begin{align*}
\phi_k &\sim \text{Dir}(\beta) \\
\theta_j &\sim \text{Dir}(\alpha) \\
Z_{ij} &\sim \text{Cat}(\theta_j) \\
X_{ij} &\sim \text{Cat}(\phi_{Z_{ij}})
\end{align*}\]

HDP (right):

\[(\alpha_k, \phi_k) \sim \text{DP}(\gamma, \text{Dir}(\beta))\]

\[\begin{align*}
\theta_j &\sim \text{DP}(\eta, \alpha) \\
Z_{ij} &\sim \text{Cat}(\theta_j) \\
X_{ij} &\sim \text{Cat}(\phi_{Z_{ij}})
\end{align*}\]
Collapsed posterior sampling

- Marginalize out ϕ_k and θ_j.

- LDA:

$$p(Z_{ij} = k|Z^{-ij}, X, \alpha, \beta) \propto \frac{N_{w_k}^{-ij} + \beta}{\sum_w N_{w_k}^{-ij} + \beta} \left(N_{kj}^{-ij} + \alpha \right)$$ \tag{1}

- HDP:

$$p(Z_{ij} = k|Z^{-ij}, X, \alpha, \beta) \propto \begin{cases} \frac{N_{w_k}^{-ij} + \beta}{\sum_w N_{w_k}^{-ij} + \beta} \left(N_{kj}^{-ij} + \eta \alpha_k \right), & \text{if } k \text{ exists} \\ \eta \alpha_k W, & \text{if } k \text{ new} \end{cases}$$ \tag{2}
Collapsed & uncollapsed posterior sampling

- Collapsed sampler works better.
- Focus on building distributed algorithms for the collapsed sampler.
Approximate distributed LDA (AD-LDA)

- Need N_{wk} (global) and N_{kj} (local) in the sampling.
- In each iteration:
 - copy global counts N_{wk} to each processor p
 - each processor sample the local counts N_{kj} independently
 - synchronize

Algorithm 1 AD-LDA

repeat
 for each processor p in parallel do
 Copy global counts: $N_{wkp} \leftarrow N_{wk}$
 Sample z_p locally: LDA-Gibbs-Iteration($x_p, z_p, N_{kjp}, N_{wkp}, \alpha, \beta$)
 end for
 Synchronize
 Update global counts: $N_{wk} \leftarrow N_{wk} + \sum_p (N_{wkp} - N_{wk})$
until termination criterion satisfied
Hierarchical distributed LDA (HD-LDA)

- Instead of copying N_{wk} to each processor, define a hierarchical dependency between ϕ_{wk} and its local copies φ_{kp}:

 $\varphi_{kp} \sim \text{Dir}(\beta_k \phi_k)$ \hspace{1cm} (3)

 $\beta_k \sim \text{Gamma}(a, b)$ \hspace{1cm} (4)

- Works a little bit better than AD-LDA in general.
Hierarchical distributed LDA (HD-LDA)

Algorithm 2 HD-LDA

repeat
 for each processor p in parallel do
 Sample z_p locally: LDA-Gibbs-Iteration($x_p, z_p, N_{kjp}, N_{wkp}, \alpha_p, \beta_k \Phi_k$)
 Sample α_p locally
 end for
 Synchronize
 Sample: β_k, Φ_k
 Broadcast: β_k, Φ_k
until termination criterion satisfied
Different from AD-LDA in that new topics are to be born

strategy: merge

Algorithm 3 AD-HDP

```
repeat
  for each processor \( p \) in parallel do
    Sample \( z_p \) locally: HDP-Gibbs-Iteration(\( x_p, z_p, N_{kjp}, N_{wkp}, \alpha_{kp}, \beta, \gamma, \eta \))
    Report \( N_{wkp}, \alpha_{kp} \) to master node
  end for
  Synchronize
  Update global counts (and merge new topics): \( N_{wk} \leftarrow N_{wk} + \sum_p (N_{wkp} - N_{wk}) \)
  \( \alpha_k \leftarrow \frac{(\sum_p \alpha_{kp})}{P} \)
  Sample: \( \eta, \alpha_k, \gamma \)
  Broadcast: \( N_{wk}, \alpha_k, \gamma, \eta \)
until termination criterion satisfied
```
Three heuristic ways to merge new topics

- Merge by matching integer topic label.

- Merge by bipartite matching:
 - Hungarian algorithm, expensive, no better than merge by matching integer topic label

- Merge by greedy matching schema:
 - sequentially compared new topics with a global set of new topics
 - if similarity larger than a threshold, merge them
 - otherwise, create a new global new topic
Datasets and models

- WIKIPEDIA and PUBMED used for testing speedups, no testing data.

<table>
<thead>
<tr>
<th></th>
<th>KOS</th>
<th>NIPS</th>
<th>WIKIPEDIA</th>
<th>PUBMED</th>
<th>NEWSGROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{train}</td>
<td>3,000</td>
<td>1,500</td>
<td>2,051,929</td>
<td>8,200,000</td>
<td>19500</td>
</tr>
<tr>
<td>W</td>
<td>6,906</td>
<td>12,419</td>
<td>120,927</td>
<td>141,043</td>
<td>27,059</td>
</tr>
<tr>
<td>N</td>
<td>467,714</td>
<td>2,166,058</td>
<td>344,941,756</td>
<td>737,869,083</td>
<td>2,057,207</td>
</tr>
<tr>
<td>D_{test}</td>
<td>430</td>
<td>184</td>
<td>-</td>
<td>-</td>
<td>498</td>
</tr>
</tbody>
</table>

- LDA, AD-LDA, HD-LDA
- HDP, AD-HDP (with and without matching)
HDP (AD-HDP) is better.

HD-LDA marginally better (if not comparable) than AD-LDA.
AD-HDP works almost the same with HDP on perplexities.
AD-HDP generate less topics.
Matching improves on the rate of convergence.
Speedups on large datasets

- Use the supercomputer DataStar
- MPI implementation

![Graph showing speedup vs. number of processors for different datasets and models.](image)
Analysis of AD-LDA with synthetic datasets

- Generate LDA data with vocabulary words $W = 3$ and $K = 2$, did not report #words generated.
- Run with $P = 2$.
- AD-LDA very close to LDA.

Figure: Left: L_1 distance to the true mode; Right: 50 samples of ϕ (projected onto the topic simplex) from the equilibrium distribution.
Analysis of AD-LDA with synthetic datasets

- AD-LDA converges closer to those learning by LDA than the true value.

Figure: Average L_1 error in word-topic distribution versus P.
When does AD-LDA fail?

- Roughly speaking, when not doing synchronization.
- Use KOS data with $P = 2$ and $K = 16$.

![Graph showing perplexity over iterations for LDA and AD-LDA with different parameters.](image)
Outline

1. Distributed Algorithms for Topic Models
 - Distributed LDA and HDP
 - Experiments

2. Distributed Stochastic Gradient MCMC
 - The Algorithm
 - Experiments
Setup

- Given data \(X = \{x_1, \cdots, x_N\}\), a generative model
 \(p(X|\theta) = \prod_{i=1}^{N} p(x_i|\theta)\) and prior \(p(\theta)\), we want to compute
 the posterior \(\pi(\theta) \triangleq p(\theta|X) \propto p(X|\theta)p(\theta)\).
- Define \(\bar{g}(X|\theta) \triangleq \frac{1}{|X|} \sum_{x \in X} \nabla_{\theta} \log p(x|\theta)\).
- Stochastic gradient Langevin dynamics (SGLD):
 \[
 \theta_{t+1} \leftarrow \theta_t + \frac{\epsilon_t}{2} \{\nabla_{\theta} \log p(\theta_t) + N\bar{g}(X^n_t|\theta)\} + \nu_t , \tag{5}
 \]
 where \(X^n_t\) is a minibatch of size \(n\) in iteration \(t\), \(\nu_t \sim N(0, \epsilon)\).
- Goal is to develop a distributed/parallel version of the SGLD for large scale learning.
In distributed system \(\bar{g}(X_{i}^{n}|\theta) \) is hard to compute because the whole data cannot be accessed in a local machine.

Define a unbiased estimator \(f(\theta,Z;X) \) for \(\bar{g}(X|\theta) \) where \(Z \) is a set of auxiliary random variables, such that

\[
\mathbb{E}_{Z} [f(\theta,Z;X)] = \bar{g}(\theta;X) .
\]

(6)

Use it in SGLD instead of \(\bar{g}(\theta;X) \):

\[
\theta_{t+1} \leftarrow \theta_{t} + \frac{\epsilon_{t}}{2} \{ \nabla_{\theta} \log p(\theta_{t}) + N f(X_{t}^{n}|\theta) \} + \nu_{t} ,
\]

(7)
Distributed Stochastic Gradient MCMC

The Algorithm

Claim

\[\theta_{t+1} \leftarrow \theta_t + \frac{\epsilon_t}{2} \{ \nabla_{\theta} \log p(\theta_t) + Nf(X_t^n|\theta) \} + \nu_t , \quad (8) \]

- It is claimed without proof that (8) generates corrected posterior samples if:
 1. \(f(X^n_t|\theta) \) is an unbiased estimate of \(\bar{g}(X|\theta) \)
 2. \(\nu_t \) decreases to 0 as \(t \to \infty \)

- Not necessarily true in theory:
 1. 1 is true when \(\nu_t \) is fixed to a small enough value (not decreasing) [Vollmer et al., 2015]
 2. not obviously be true with a decreasing \(\nu_t \)
 3. the condition for a decreasing \(\nu_t \) to be true relates to the Liapunov function [Teh et al., 2014], though I think these two are closely related
 - a fixed step size is used in experiments

- For now we assume the claim is true.
Algorithm:

1. Each machine loads a partition of the whole data, with size N_s
2. Sample a machine with probability q_s ($\sum_s q_s = 1$) and pass the previous θ_t to this machine
3. Sample the SGLD equation with estimator (9):

$$f_d(\theta; X^n_s) \triangleq \frac{N_s}{Nq_s} \bar{g}(\theta; X^n_s)$$ (9)

Theorem

SGLD with the estimator (9) is a valid estimator and generates correct posterior samples.
Distributed SGLD with parallel chains

1. Store the data on a distributed file system to minimize the transition cost.
2. Store the parameter θ with distributed caches to minimize the communication cost.
3. Start several parallel MCMC chains, each evolves via the SGLD.
4. Jump to other machines via a scheduler $h(Q)$, e.g., uniformly scheduling.
5. Run a few mini-batches before jumping to other machines.
6. Same estimator as the above case.

Theorem

SGLD with parallel chains and a scheduler generates correct posterior samples.
Adaptive load balance

- The above method becomes a problem when some machines are much slower.
- Propose to let the chain in the fast machine do more samples before jumping to another machine.

Theorem

SGLD with adaptive load balance generates correct posterior samples.
The variance of samples from different chains is too large.

Propose to reduce variance by averaging samples from a set of chains, e.g.,

\[
\theta_{t+1} = \frac{1}{R} \sum_{r=1}^{R} \theta^r_{t+1}
\]

\[
\theta_t + \frac{\varepsilon}{2} \left\{ \nabla_{\theta} \log p(\theta_t) + \frac{N}{nR} \sum_{x \in \cup X^n_{t,r}} g(\theta_t; x) \right\} + \bar{\nu}_t,
\]

where \(\bar{\nu}_t \sim N(0, \varepsilon_t) \).

Need to add a corrected noise \(\eta_t \sim N(0, \frac{R-1}{R} \varepsilon) \).
Multivariate Gaussian demonstration

\[x_i \sim N(\mu_x, \Sigma_x), \quad \mu_x \sim N(\mu_0, \Sigma_0) \quad (12) \]

- 20 machines
- \(N = 20,000, N_s = 500 \sim 1500 \)
- Step size \(\varepsilon = 1e^{-7} \), mini-batch size 300
- Bias correction (red circuit is the true posterior):
Multivariate Gaussian demostration

\[x_i \sim N(\mu_x, \Sigma_x), \quad \mu_x \sim N(\mu_0, \Sigma_0) \]

- 4 machines
- \(N = 8,000, \ N_s = 2,000 \)
- Step size \(\epsilon = 2e^{-6} \), mini-batch size 300
- Effect of trajectory lengths (red circuit is the true posterior):
Distributed LDA

Comparison:
- D-SGLD: this method
 - D-CC: complete coupling chains
 - D-CI: complete independent chains
 - D-Hybrid: partially coupling chains
- AD-LDA
- Async-LDA: AD-LDA without synchronization
- SGRLD: stochastic gradient Riemannian Langevin dynamics

Datasets:
- Wikipedia: 4.6M docs, 811M tokens, 7702 vocabulary size
- PubMed Abstract: 8.2 docs, 730M tokens, 39,987 vocabulary
Table: Required time to reach the perplexity that AD-LDA obtains after running 27.7 hr.

Q: how can SGRLD run faster on a single machine than AD-LDA on 20 machines?
Figure: Group size and # groups effects on Wikipedia (left) and Pubmed (right). Generally, for fixed #groups, the larger the group size, the better; For fixed group size, the more groups, the better.
Distributed Stochastic Gradient MCMC

Experiments

On different data sizes

- D-SGLD less affected by data sizes.
- D-SGLD does worse in small sub-datasets in Pubmed (right).
Load balance

- Enforce unbalance of computational speed by dummy delay.
- D-SGLD overcomes this by running more iterations in the faster machines.

Figure: Load balance. \((a, b)\) means make the machine \(b\) times slower.
Figure: #topics. Top: Wikipedia; Bottom: Pubmed. Right: Perplexity after 10^4 updates.
Thanks for your attention!!!