Fabrication and Manufacturing (Basics)

- Batch processes
 - Fabrication time independent of design complexity
- Standard process
 - Customization by masks
 - Each mask defines geometry on one layer
 - Lower-level masks define transistors
 - Higher-level masks define wiring
- Silicon is neat stuff
 - Oxide protects things from impurities
 - Can be etched selectively on silicon or metal
- Can be doped
 - Add P or As impurities

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process
Making Chips

- Masks
- Chemicals
- Wafers
- Processing
- Processed wafer
- Chips

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors
Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line
Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Basic Processing Steps

- N-diffusion created by doping regions of the substrate
- Poly and metal are laid over the substrate, with oxide to insulate them from substrate and each other
- Wires are added in layers, alternating with oxide
- Vias are cut in the oxide
Fabrication Steps

• Features are patterned on a wafer by a photolithographic process
 – *Photo-light lithography*, *n.* process of printing from a plane surface on which image to be printed is ink-receptive and the blank area is ink-repellant
• Cover the wafer with a light-sensitive, organic material called *photoresist*
• Expose to light with the proper pattern (mask)
• Patterns left by photoresist can be used to control where oxide is grown or materials are placed on surface of wafer

Fabrication Steps

• Layout contains information on what patterns have to made on the wafer
• Masks are created using the layout information provided by the designer
• Procedure involves selective removal of the oxide
 – Coat the oxide with photoresist, polymerized by UV light (applied through mask)
 – Polymerized photoresist dissolves in acid
 – Photoresist itself is acid-resistant
Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

Oxidation

- Grow SiO₂ on top of Si wafer
 - 900 – 1200 C with H₂O or O₂ in oxidation furnace
Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist
Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn’t melt in next step
n-well

- n-well is formed with diffusion or ion implantation

- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si

- Ion Implantation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO$_2$, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps
Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

- Use same lithography process to pattern polysilicon
Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- *Self-aligned process* where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn’t melt during later processing
N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

- Strip off oxide to complete patterning step
P-Diffusion

- Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed
Metalization

- Sputter on aluminum (copper) over whole wafer
- Pattern to remove excess metal, leaving wires

Basic Processing Steps (Summary)

- Start with wafer at current step
- Add photoresist
- Pattern photoresist with mask
- Step-specific etch, implant, etc.
- Wash off resist
Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size \(f \) = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of \(\lambda = f/2 \)
 - E.g. \(\lambda = 0.3 \, \mu m \) in 0.6 \(\mu m \) process

Design Rules

- Design rules govern the layout of individual components: transistors, wires, contacts, vias
 - How small can the gates be, and how small can the wires be made?
- Conflicting Demands:
 - component packing: more functionality, higher speed
 - Chip yield: smaller sizes can reduce yield (fraction of good chips)
- Conservative vs aggressive design rules
Foundry Interface

- Layout (mask set)
- Designer
- Foundry

Design Rules
- Process Parameters

Geometric Design Rules

- Resolution
 - Width and spacing of lines on one layer
- Alignment
 - make sure interacting layers overlap (or don’t)
 - Contact surround
 - Poly overlap of diffusion
 - Well surround of diffusion
SCMOS Design Rules

- Scalable CMOS design rules
- Feature size $\lambda = \text{half the drawn gate length (poly width)}$
- Mentor Graphics IC tool has built-in design rule checker (DRC)

Example design rules:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Minimum Width</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal 1</td>
<td>3λ</td>
<td>3\lambda</td>
</tr>
<tr>
<td>Metal 2</td>
<td>3λ</td>
<td>4\lambda</td>
</tr>
<tr>
<td>Poly</td>
<td>2λ</td>
<td>poly-poly: 2λ poly-diff: 1λ</td>
</tr>
</tbody>
</table>

Simplified Design Rules

Conservative rules to get you started
Tub Ties and Latchup

- Substrate must be connected to power supply
- p-tub for nMOS to V_{SS} (Gnd)
- N-tub for pMOS to V_{DD}
- Connections made by special vias called tub ties
- Conservative design rule: place tub ties for every one or two transistors
- Why not place one tie in each tub that has 50 transistors?

Latchup

- Too few ties: high resistance between tub and power supply, leads to parasitic bipolar transistors inhibiting normal chip operation
- Parasitic silicon-controlled rectifier (SCR)
- When both bipolar transistors are off, SCR conducts no current
- SCR turns on: high current short-circuit between V_{DD} and Gnd.
Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In $f = 0.6 \, \mu m$ process, this is 1.2 μm wide, 0.6 μm long
Example: Inverter

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32λ by 40λ

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32λ by 40λ
Stick Diagrams

• *Stick diagrams* help plan layout quickly
 – Need not be to scale

Stick Diagrams

• Designing complete layout in terms of rectangles can be overwhelming
• Stick diagram: abstraction between transistor schematic and layout
 – Cartoon of a chip layout
• Replace rectangles by lines
Stick Diagram

Wiring Tracks

- *A wiring track* is the space required for a wire
 - 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
- Transistors also consume one wiring track
Well spacing

- Wells must surround transistors by 6λ
 - Implies 12λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ
Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

\[Y = \overline{(A + B + C)D} \]
Example: O3AI

\[Y = \left(A + B + C \right) D \]

- Sketch a stick diagram for O3AI and estimate area

Some Layout Hints

- Plan the global structure (“big picture”), then design cells
 - Floorplan
 - Wiring strategy
 - Power and ground distribution
 - Systematic placement
 - Keep all pMOS/nMOS together
 - Place transistors in rows: share source/drain diffusion

- Wiring on orthogonal metal layers
 - Assign preferred directions to M1 and M2
 - Use diffusion only for devices, not for interconnect
 - Use poly only for very local interconnect
Cell Minimization

- Chip area (cell size) must be minimized carefully

Impact of die size/chip area on cost (unpackaged dies)

<table>
<thead>
<tr>
<th></th>
<th>Pentium die</th>
<th>1% increase in die size</th>
<th>15% increase in die size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer cost</td>
<td>$1,460</td>
<td>$1,460</td>
<td>$1,460</td>
</tr>
<tr>
<td>Die size</td>
<td>160.2 mm²</td>
<td>161.8 mm²</td>
<td>184.2 mm²</td>
</tr>
<tr>
<td>Die cost</td>
<td>$84.06</td>
<td>$85.33</td>
<td>$102.55</td>
</tr>
<tr>
<td>Chips fabricated per week</td>
<td>498.1 K</td>
<td>482.9 K</td>
<td>337.5 K</td>
</tr>
<tr>
<td>Added annual cost</td>
<td>—</td>
<td>$63.5 M</td>
<td>$961 M</td>
</tr>
</tbody>
</table>

1% increase in die size leads to 3% decrease in stock price for Intel!

Minimize number of diffusion strips

- How do we order the gate inputs (poly)?
- More diffusion strips ⇒ more spacing, more area

Try a, b, c, d, e:

Two n-diff gaps, zero p-diff gaps
• Euler path: Visit every edge exactly once
 • Find all Euler paths for nMOS and pMOS graphs
 • Find p- and n-path that have identical labeling
 • For example: d, e, a, b, c
 • If no such path exists, then break diffusion into strips
Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors

- Now you know everything necessary to start designing schematics and layout for a simple chip!