Dynamic Logic

2 phase operation:
• Precharge
• Evaluation

• N+2 transistors for N-input function
 – Better than 2N transistors for complementary static CMOS
 – Comparable to N+1 for ratio-ed logic
• No static power dissipation
 – Better than ratio-ed logic
• Careful design, clock signal Φ needed
Dynamic Logic: Principles

- **Precharge**
 \(\Phi = 0 \), \(Out \) is precharged to \(V_{DD} \) by \(M_p \).
 \(M_e \) is turned off, no dc current flows (regardless of input values)

- **Evaluation**
 \(\Phi = 1 \), \(M_e \) is turned on, \(M_p \) is turned off.
 Output is pulled down to zero depending on the values on the inputs. If not, precharged value remains on \(C_L \).

Important: Once \(Out \) is discharged, it cannot be charged again!
Gate input can make only one transition during evaluation

- Minimum clock frequency must be maintained
- Can \(M_e \) be eliminated?
Dynamic 4 Input NAND Gate

Reliability Problems — Charge Leakage

(1) Leakage through reverse-biased diode of the diffusion area
(2) Subthreshold current from drain to source

Minimum Clock Frequency: > 1 MHz
Charge Sharing (redistribution)

- Assume: during precharge, A and B are 0, \(C_a \) is discharged
- During evaluation, B remains 0 and A rises to 1
- Charge stored on \(C_L \) is now redistributed over \(C_L \) and \(C_a \)

\[
C_L V_{DD} = C_L V_{out}(t) + C_a V_X
\]

\[
V_X = V_{DD} - V_t, \text{ therefore } \delta V_{out}(t) = V_{out}(t) - V_{DD} = \frac{C_a}{C_L} (V_{DD} - V_t)
\]

Desirable to keep the voltage drop below threshold of pMOS transistor (why?) \(\Rightarrow C_a/C_L < 0.2 \)

Charge Redistribution - Solutions

1. **Static bleeder**
 - (a) Static bleeder

2. **Precharge of internal nodes**
 - (b) Precharge of internal nodes
Cascading Dynamic Gates

Internal nodes can only make 0-1 transitions during evaluation period

Domino Logic

Static inverters between dynamic stages

Static Inverter with Level Restorer
Domino Logic - Characteristics

- Only non-inverting logic
- Very fast - Only 1-0 transitions at input of inverter
 - Precharging makes pull-up very fast
 - Adding level restorer reduces leakage and charge redistribution problems
- Optimize inverter for fan-out

np-CMOS (Zipper CMOS)

- Only 1-0 transitions allowed at inputs of PUN
- Used a lot in the Alpha design
np CMOS Adder

![np CMOS Adder Diagram]

CMOS Circuit Styles - Summary

<table>
<thead>
<tr>
<th>Style</th>
<th>Ratioed</th>
<th>Static Power</th>
<th># transistors</th>
<th>Area (μm²)</th>
<th>Propagation Delay (nsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementary</td>
<td>No</td>
<td>No</td>
<td>8</td>
<td>533</td>
<td>0.61</td>
</tr>
<tr>
<td>Pseudo-NMOS</td>
<td>Yes</td>
<td>Yes</td>
<td>5</td>
<td>288</td>
<td>1.49</td>
</tr>
<tr>
<td>CPL</td>
<td>No</td>
<td>No</td>
<td>14</td>
<td>800</td>
<td>0.75</td>
</tr>
<tr>
<td>Dynamic (NP)</td>
<td>No</td>
<td>No</td>
<td>6</td>
<td>212</td>
<td>0.37</td>
</tr>
</tbody>
</table>

4-input NAND Gate