MOS Transistor Theory

• So far, we have viewed a MOS transistor as an ideal switch (digital operation)
 – Reality: less than ideal

Introduction

• So far, we have treated transistors as ideal switches
• An ON transistor passes a finite amount of current
 – Depends on terminal voltages
 – Derive current-voltage (I-V) relationships
• Transistor gate, source, drain all have capacitance
 – \[I = C \left(\frac{\Delta V}{\Delta t} \right) \Rightarrow \Delta t = \left(\frac{C}{I} \right) \Delta V \]
 – Capacitance and current determine speed
• Also explore what a “degraded level” really means
MOS Transistor Theory

- Study conducting channel between source and drain
 - Modulated by voltage applied to the gate (voltage-controlled device)
 - nMOS transistor: majority carriers are electrons (greater mobility), p-substrate doped (positively doped)
 - pMOS transistor: majority carriers are holes (less mobility), n-substrate (negatively doped)

Terminal Voltages

- Mode of operation depends on V_{gs}, V_{ds}, V_s
 - $V_{gs} = V_g - V_s$
 - $V_{gd} = V_g - V_d$
 - $V_{ds} = V_d - V_s = V_{gs} - V_{gd}$
- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \geq 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation
Gate Biasing

- $V_{gs} = 0$: no current flows from source to drain (insulated by two reverse biased pn junctions)
- $V_{gs} > 0$: electric field created across substrate
- Electrons accumulate under gate: region changes from p-type to n-type
- Conduction path between source and drain

nMOS Device Behavior

- $V_{gs} << V_t$: Accumulation mode
- $V_{gs} = V_t$: Depletion mode
- $V_{gs} > V_t$: Inversion mode

- Enhancement-mode transistor: Conducts when gate bias $V_{gs} > V_t$
- Depletion-mode transistor: Conducts when gate bias is zero
nMOS Cutoff

- No channel
- $I_{ds} = 0$

![nMOS Cutoff Diagram]

nMOS Linear

- Channel forms
- Current flows from d to s
 - e^- from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

![nMOS Linear Diagram]
nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates
- Similar to current source

\[V_{gs} > V_t \]
\[V_{gd} < V_t \]
\[V_{ds} > V_{gs} - V_t \]

I-V Characteristics

- In linear region, I_{ds} depends on
- How much charge is in the channel?
- How fast is the charge moving?
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel
- $Q_{\text{channel}} =$

\[
C = \frac{q}{V_{GS}}
\]
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel
- \(Q_{\text{channel}} = CV \)
- \(C = C_g = \varepsilon_{\text{ox}} WL/t_{\text{ox}} = C_{\text{ox}} WL \)
- \(V = V_{\text{gc}} - V_t = (V_{\text{gs}} - V_{\text{ds}}/2) - V_t \)
Carrier velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
 - $v = \mu E$

\[\mu\] called mobility

- $E =$
Carrier velocity

• Charge is carried by e-
• Carrier velocity v proportional to lateral E-field between source and drain
 • $v = \mu E$ \quad μ called mobility
 • $E = V_{ds}/L$
• Time for carrier to cross channel:
 \[- t = \]
nMOS Linear I-V

• Now we know
 – How much charge Q_{channel} is in the channel
 – How much time t each carrier takes to cross

\[I_{ds} = \frac{Q_{\text{channel}}}{t} \]
nMOS Linear I-V

- Now we know
 - How much charge \(Q_{\text{channel}} \) is in the channel
 - How much time \(t \) each carrier takes to cross

\[
I_{ds} = \frac{Q_{\text{channel}}}{t} = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \quad \beta = \mu C_{ox} \frac{W}{L}
\]

nMOS Saturation I-V

- If \(V_{gd} < V_t \), channel pinches off near drain
 - When \(V_{ds} > V_{dsat} = V_{gs} - V_t \)
- Now drain voltage no longer increases current

\[
I_{ds} =
\]
nMOS Saturation I-V

• If $V_{gd} < V_t$, channel pinches off near drain
 – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
• Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
nMOS I-V Summary

- Shockley 1st order transistor models

\[
I_{ds} = \begin{cases}
0 & V_{gs} < V_t \text{ cutoff} \\
\beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} \text{ linear} \\
\frac{\beta}{2} (V_{gs} - V_t)^2 & V_{ds} > V_{dsat} \text{ saturation}
\end{cases}
\]

Current-Voltage Relations

- **Linear Region:** \(V_{DS} \leq V_{GS} - V_T \)
 \[
 I_D = \kappa' \frac{W}{L} (V_{GS} - V_T) \left(V_{DS}^2 / 2 \right)
 \]
 with
 \[
 \kappa' = \mu_n C_{ox} - \frac{\mu_n L_{ox}^2}{L_{ox}} \text{ Process Transconductance Parameter}
 \]

- **Saturation Mode:** \(V_{DS} \geq V_{GS} - V_T \)
 \[
 I_D = \kappa' \frac{W}{2L} (V_{GS} - V_T)^2 (1 + \nu'_{DS})
 \]
Current-Voltage Relations

- k'_n: transconductance of transistor
- $\frac{W}{L}$: width-to-length ratio

- As W increases, more carriers available to conduct current
- As L increases, V_{ds} diminishes in effect (more voltage drop). Takes longer to push carriers across the transistor, reducing current flow

Example

- For a 0.6 μm process
 - From AMI Semiconductor
 - $t_{ox} = 100$ Å
 - $\mu = 350 \text{ cm}^2/\text{V} \cdot \text{s}$
 - $V_t = 0.7 \text{ V}$
- Plot I_{ds} vs. V_{ds}
 - $V_{gs} = 0, 1, 2, 3, 4, 5$
 - Use $W/L = 4/2$.

\[
\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-3}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A/V^2
\]
pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm2/V*s in AMI 0.6 μm process
- Thus pMOS must be wider to provide same current
 - In this class, assume $\mu_n / \mu_p = 2$ to 3

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion
Gate Capacitance

- Approximate channel as connected to source
- \(C_{gs} = \varepsilon_{ox} WL/t_{ox} = C_{ox} WL = C_{\text{permicron}} W \)
- \(C_{\text{permicron}} \) is typically about 2 fF/\(\mu \)m

![Gate Capacitance Diagram]

The Gate Capacitance

\[
C_{gate} = \frac{\varepsilon_{ox} WL}{t_{ox}}
\]
Diffusion Capacitance

- C_{sb}, C_{db}
- Undesirable, called *parasitic* capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g for contacted diff
 - $\frac{1}{2} C_g$ for uncontacted
 - Varies with process

\[C_{\text{diff}} = C_{\text{bottom}} + C_{\text{sw}} = C_j \times \text{AREA} + C_{jw} \times \text{PERIMETER} = C_j L_2 W + C_{jw} (L_2 + W) \]
Parasitic Resistances

\[R_S = \left(\frac{L_S}{W} \right) R_D + R_C \]
\[R_D = \left(\frac{L_D}{W} \right) R_D + R_C \]

- \(R_C \): contact resistance
- \(R_D \): sheet resistance per square of drain-source diffusion

Body Effect

- Many MOS devices on a common substrate
 - Substrate voltage of all devices are normally equal
- But several devices may be connected in series
 - Increase in source-to-substrate voltage as we proceed vertically along the chain
 - Net effect: slight increase in threshold voltage \(V_t \),
 \(V_{t2} > V_{t1} \)
Pass Transistors

• We have assumed source is grounded
• What if source > 0?
 – e.g. pass transistor passing V_{DD}
 – $V_g = V_{DD}$
 – If $V_s > V_{DD} - V_t$, $V_{gs} < V_t$
 – Hence transistor would turn itself off
• nMOS pass transistors pull no higher than $V_{DD} - V_{th}$
 – Called a degraded “1”
 – Approach degraded value slowly (low I_{ds})
• pMOS pass transistors pull no lower than V_{tp}
Pass Transistor Ckts

\[V_s = V_{DD} - V_{tn} \]

\[V_s = |V_{tp}| \]

Pass Transistor Ckts

\[V_s = V_{DD} - V_{tn} \]

\[V_s = V_{DD} - 2V_{tn} \]
Effective Resistance

- Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis

- Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate

- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C

- Capacitance proportional to width
- Resistance inversely proportional to width
RC Values

- **Capacitance**
 - $C = C_g = C_s = C_d = 2 \text{ fF/\mu m}$ of gate width
 - Values similar across many processes

- **Resistance**
 - $R \approx 6 \text{ K}\Omega$ in 0.6\mu m process
 - Improves with shorter channel lengths

- **Unit transistors**
 - May refer to minimum contacted device ($4/2\lambda$)
 - Or maybe 1 \mu m wide device
 - Doesn’t matter as long as you are consistent

Activity

1) If the width of a transistor increases, the current will
 increase decrease not change

2) If the length of a transistor increases, the current will
 increase decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will
 increase decrease not change

4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change

5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will
 increase decrease not change
Activity

1) If the width of a transistor increases, the current will
 increase decrease not change
2) If the length of a transistor increases, the current will
 increase decrease not change
3) If the supply voltage of a chip increases, the maximum transistor
 current will
 increase decrease not change
4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change
5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change
6) If the supply voltage of a chip increases, the gate capacitance of each
 transistor will
 increase decrease not change

DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter
 - When $V_{in} = 0$ \Rightarrow $V_{out} = V_{DD}$
 - When $V_{in} = V_{DD}$ \Rightarrow $V_{out} = 0$
 - In between, V_{out} depends on
 transistor size and current
 - By KCL, must settle such that
 $I_{dsn} = |I_{dsp}|$
 - We could solve equations
 - But graphical solution gives more insight
Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} <$</td>
<td>$V_{gsn} >$</td>
<td>$V_{gsn} >$</td>
</tr>
<tr>
<td>$V_{dsn} <$</td>
<td>$V_{dsn} >$</td>
<td>$V_{dsn} >$</td>
</tr>
</tbody>
</table>
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
</tbody>
</table>

nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
</tbody>
</table>

$V_{gsn} = V_{in}$
$V_{dsn} = V_{out}$
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
<tr>
<td>$V_{out} < V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
</tbody>
</table>

$pMOS$ Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} >$</td>
<td>$V_{gsp} <$</td>
<td>$V_{gsp} <$</td>
</tr>
<tr>
<td>$V_{dsp} >$</td>
<td>$V_{dsp} <$</td>
<td>$V_{dsp} <$</td>
</tr>
</tbody>
</table>
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{gsp} > V_{tp})</td>
<td>(V_{gsp} < V_{tp})</td>
<td>(V_{gsp} < V_{tp})</td>
</tr>
<tr>
<td>(V_{dsp} > V_{gsp} - V_{tp})</td>
<td>(V_{dsp} < V_{gsp} - V_{tp})</td>
<td>(V_{dsp} < V_{gsp} - V_{tp})</td>
</tr>
</tbody>
</table>

\[V_{gsp} = V_{in} - V_{DD} \]
\[V_{tp} < 0 \]
\[V_{dsp} = V_{out} - V_{DD} \]
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td>$V_{in} > V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{out} > V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
</tr>
</tbody>
</table>

$V_{gsp} = V_{in} - V_{DD}$

I_{dsn}

$V_{dsp} = V_{out} - V_{DD}$

I_{dsp}

I_{dsn}

V_{DD}

V_{in}

V_{out}

I-V Characteristics

- Make pMOS wider than nMOS such that $\beta_n = \beta_p$
DC Transfer Curve

- Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

- Revisit transistor operating regions
Operating Regions

- Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cutoff</td>
<td>Linear</td>
</tr>
<tr>
<td>B</td>
<td>Saturation</td>
<td>Linear</td>
</tr>
<tr>
<td>C</td>
<td>Saturation</td>
<td>Saturation</td>
</tr>
<tr>
<td>D</td>
<td>Linear</td>
<td>Saturation</td>
</tr>
<tr>
<td>E</td>
<td>Linear</td>
<td>Cutoff</td>
</tr>
</tbody>
</table>

Beta Ratio

- If $\beta_p \neq \beta_n$, switching point will move from $V_{DD}/2$
- Called *skewed* gate
- Other gates: collapse into equivalent inverter
Noise Margins

• How much noise can a gate input see before it does not recognize the input?

Logic Levels

• To maximize noise margins, select logic levels at

\[V_{IL} \]
Logic Levels

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic