An Overview of Test at IBM Microelectronics

Harry Linzer

Agenda

- IBM as a Chip Maker
- Challenges of Test
- Test Methodology
 - Overview
 - LSSD
 - OPMISR
 - OPMISR + Illinois Test
 - Macro Isolation
 - How customers implement test methodology
IBM as a Chip Maker

- IBM has been producing chips for internal consumption since the mid-1960's in support of the IBM System/360 Mainframe
 - Currently – approximately 20% internal use / 80% for others
- OEM ASICs vendor since mid 1990's
 - Currently releasing 100-150 designs / year
 - Focus Areas:
 - Networking
 - Consumer Products
 - Digital Cameras
 - Video Games
 - OEM business provides economies of scale to support fabs and development for internal consumption

IBM as a Chip Maker

- Fabs
 - East Fishkill, New York
 - State of the art 300 mm wafer facility
 - 130 nm, 90 nm, 65 nm, 45 nm (planned)
 - Burlington, Vermont
 - Previous Generation 200 mm wafer facility
 - 250 nm, 180 nm, 130 nm
- Support Engineers
 - Process Development
 - Main lab in East Fishkill, New York
 - Design Support, 5 locations in North America, additional WW locations
 - Approx 500 Engineers World Wide
- Tools
 - Mixture of Internally Developed, Partner and Third Party Tools
IBM as a Chip Maker

- Typical Chip
 - 12 mm x 12 mm (range is from 5 to 18 mm)
 - 5 – 15 million gates
 - 700 I/O Pins (can be as many as 2500)
 - 4 Mbit of SRAM
 - Capability for up to 32 Mbit of DRAM
 - Multiple Types of Hard IP Blocks
 - PLL's, High Speed SERDES (+12 Gbit/Sec), Microprocessors, CAM's

Challenges of Test

- Customers are Very Demanding
 - Few customers will accept more than 1000 bad parts / million shipped
 - Some expect less than 100 / million
 - 99.5 % DC Stuck / 95% Transition Fault Coverage not always good enough
- Chips are getting large and very complex
 - 15 Million Gates is NOT UNUSUAL – 50 million is in sight
 - Mixture of differing type of Mixed Signal and Hard IP
- For 180 nm and less, DC Stuck at Fault testing not totally satisfactory.
 - Must be supplemented by Transition Testing to meet customer expectations
 - At sub 130 nm, demand for At Speed Testing is common
- Test is OVERHEAD
 - Less Test Cost = Greater Profit
 - Minimize Tester Time
 - Leverage Older / Cheaper Testers
Test Methodology

- Full Scan
 - 100% ATPG Based
 - Typically 99.5% DC Stuck at Fault Coverage achieved
 - Mixture of Target Patterns
 - Weighted Random Pattern Testing
 - AC Transition Fault Coverage varies
 - “No Cost Option” – 50-60% coverage is typical
 - “Premium” - 90%+ achievable
- Reduced Pin Count Testing
 - Allows use of Low Cost Testers (current workhorse Advantest 6670)
 - 64 High Speed Channels (->125 MHz)
 - 64 Low Speed Channels (-> 1 KHz)
 - 128 VDD/GND Channels
Test Methodology

- LSSD
 - Level Sensitive Scan Design
 - Developed in late 1960's at IBM
 - First major use of Full Scan Test
 - Race Free on designs with multiple clock domains
 - Supports Structure based ATPG with simple straightforward testers
 - IBM Challenge:
 - Make it trivial to use on most designs
 - Solution IBM / Cadence DFT tool

Test Methodology

- Conventional MUX Scan
 - What happens if Clock #2 is somewhat later than Clock #1 ???
Test Methodology

- Flip Flop Implementation
 - Master Latch
 - Slave Latch
 - Clock Overhead

- LSSD Implementation
 - Independent Test Clocks
 - More Complex Clock Overhead (Clock Splitter)
 - Better Control During Test
 - Shared among several flops
Test Methodology

- Future Mux Scan / LSSD Hybrid
 - More Commonality with Industry
 - Less switching when signals are functional
 - Less Switching during Test
 - Adds new function – Better AC Test
 - Most of LSSD Advantage (Race Free) – Loses Little (Ability of Scan Flush)

Test Methodology

- Problem
 - Scan test time for latest chips takes too long
 - Tester Capacity
 - Tester Operational Cost
 - Tester Time slows production line
 - Solutions
 - Move More data through less pins
 - OPMISR
 - OPMISR + Illinois Test
Test Methodology

- Scan to OPMISR
 - Introduced with 130 nm chips
 - OPMISR = On Product Multiple Input Signature Register
 - Eliminates need for Scan Out pins
 - Doubles number of Scan Chains / Halves Tester Time
 - Signature read out and compared against known good value at end of test cycle

Test Methodology

- Before Scan to OPMISR
 - 6 I/O's
 - 3 Scan Chains
Test Methodology

- After Scan to OPMISR
 - 6 I/O’s
 - 6 Scan Chains

- Illinois Scan + Scan to MISR
 - Introduced in 90 nm technology
 - Observation:
 - High Percentage of bits in Scan Chain are “Don’t Cares”
 - Scan Multiple Scan Chains from one input lining up “Don’t Cares”
Test Methodology

- Illinois Scan + OPMISR
 - Empirical Observations
 - 10:1 Ratio of Scan In is optimal for most designs
 - Normally Yields 6:1 test productivity improvement
 - Negative
 - What happens if inconvenient bits just happen to line up
 - Typically happens in a 20-30 places / chip
 - Solution
 - Supplement with limited amount full scan testing
 - ATPG time increases by 50%
 - Who cares – You only do it once / chip !!!
 - IBM is leading maker of UNIX Server Boxes

Test Methodology

- Hard IP / Mixed Signal
 - Macro Isolation Strategy
 - Selected signals must have path to chip pins
 - Other ports must be controllable or observable via scan latches
Test Methodology

- Implementation
 - I/O Padring compiled to customer spec by tool
 - Customer logic contains
 - Flops + Gates
 - Hard IP wrapped to hide test issues
 - Test Insertion done with DFT Synthesis tool
 - Verification of ATPG Design Rule conformance done by tool
 - Full Scan
 - Macro Isolation
 - I/O Boundary Testing