Circuit Pitfalls

On how to avoid bad circuit design!

Outline

• Circuit Pitfalls
 – Detective puzzle
 – Given circuit and symptom, diagnose cause and recommend solution
 – All these pitfalls have caused failures in real chips
• Noise Budgets
• Reliability
Bad Circuit 1

- Circuit
 - 2:1 multiplexer

Principle:

Solution:

- Symptom
 - Mux works when selected D is 0 but not 1.
 - Or fails at low V_{DD}.

Bad Circuit 2

- Circuit
 - Latch

Principle:

Solution:

- Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Q spontaneously flips to 1
Bad Circuit 3

• Circuit
 – Domino AND gate

 \[\phi \quad 0 \quad 1 \]

 \[X \quad Y \]

 Principle:

Solution:

• Symptom
 – Precharge gate (Y=0)
 – Then evaluate
 – Eventually Y spontaneously flips to 1

Bad Circuit 4

• Circuit
 – Pseudo-nMOS OR

 \[\phi \quad X \quad B \quad Y \]

Principle:

Solution:

• Symptom
 – When only one input is true, Y = 0.
Bad Circuit 5

- **Circuit**
 - Latch

![Diagram of a latch circuit](image)

- **Symptom**
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.

Principle:

Solutions:

Bad Circuit 6

- **Circuit**
 - Domino AND gate

![Diagram of a domino AND gate](image)

- **Symptom**
 - Precharge gate while A = B = 0, so Z = 0
 - Set $\phi = 1$
 - A rises
 - Z is observed to sometimes rise

Principle:

Solutions:
Bad Circuit 7

- Circuit
 - Dynamic gate + latch

Principle:

Solution:

- Symptom
 - Precharge gate while transmission gate latch is opaque
 - Evaluate
 - When latch becomes transparent, X falls

Bad Circuit 8

- Circuit
 - Latch

Principle:

Solution:

- Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver
Bad Circuit 9

- Circuit
 - Anything

- Symptom
 - Some gates are slower than expected

Principle:

Noise

- Sources
 - Power supply noise / ground bounce
 - Capacitive coupling
 - Charge sharing
 - Leakage
 - Noise feedthrough

- Consequences
 - Increased delay (for noise to settle out)
 - Or incorrect computations
Reliability

- Hard Errors
- Soft Errors

```
<table>
<thead>
<tr>
<th>Time</th>
<th>Failure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant Mortality</td>
<td></td>
</tr>
<tr>
<td>Useful Operating Life</td>
<td></td>
</tr>
<tr>
<td>Wear Out</td>
<td></td>
</tr>
</tbody>
</table>
```

Electromigration

- “Electron wind” causes movement of metal atoms along wires
- Excessive electromigration leads to open circuits
 - Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature E_kT
 - Black’s Equation:
 $$MTTF \propto \frac{e^{\frac{E_kT}{J_{dc}n}}}{J_{dc}}$$
 - Typical limits: $J_{dc} < 1–2$ mA / μm²
Self-Heating

- Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive, slower
- Self-heating limits AC current densities for reliability

\[J_{\text{rms}} = \sqrt{\frac{\int \text{heat} \, dt}{T}} \]

- Typical limits: \(J_{\text{rms}} < 15 \text{ mA/\mu m}^2 \)

Hot Carriers

- Electric fields across channel impart high energies to some carriers
 - These “hot” carriers may be blasted into the gate oxide where they become trapped
 - Accumulation of charge in oxide causes shift in \(V_t \) over time
 - Eventually \(V_t \) shifts too far for devices to operate correctly
- Choose \(V_{DD} \) to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with slow input rise time and long propagation delays
Latchup

- Latchup: positive feedback leading to $V_{DD} - GND$ short
 - Major problem for 1970’s CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps

Guard Rings

- Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- Surround sensitive region with guard ring to collect injected charge
Overvoltage

- High voltages can damage transistors
 - Electrostatic discharge
 - Oxide arcing
 - Punchthrough
 - Time-dependent dielectric breakdown (TDDB)
 - Accumulated wear from tunneling currents
- Requires low V_{DD} for thin oxides and short channels
- Use ESD protection structures where chip meets real world

Summary

- Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- Very important to check circuits for pitfalls
 - For large chips, you need an automatic checker.
 - Design rules aren’t worth the paper they are printed on unless you back them up with a tool.
Soft Errors

- In 1970’s, DRAMs were observed to occasionally flip bits for no apparent reason
 - Ultimately linked to alpha particles and cosmic rays
- Collisions with particles create electron-hole pairs in substrate
 - These carriers are collected on dynamic nodes, disturbing the voltage
- Minimize soft errors by having plenty of charge on dynamic nodes
- Tolerate errors through ECC, redundancy
- Soft errors are now a problem for logic too!