VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process.
- A chip with no manufacturing defect is called a good chip.
- Fraction (or percentage) of good chips produced in a manufacturing process is called the yield. Yield is denoted by symbol Y.
- Cost of a chip:
 \[
 \text{Cost of fabricating and testing a wafer} \times \frac{Y}{\text{Number of chip sites on the wafer}}
 \]
Clustered VLSI Defects

Unclustered defects
Wafer yield = 12/22 = 0.55

Clustered defects (VLSI)
Wafer yield = 17/22 = 0.77

Yield Parameters

- Defect density \(d\) = Average number of defects per unit of chip area
- Chip area \(A\)
- Clustering parameter \(\alpha\)
- Negative binomial distribution of defects,
 \[p(x) = \text{Prob (number of defects on a chip = x)} \]
 \[= \frac{\Gamma(a+x)}{x! \Gamma(a)} \cdot \frac{(Ad/\alpha)^x}{(1+Ad/\alpha)^{\alpha+x}} \]

where \(\Gamma\) is the gamma function
\(\alpha = 0\), \(p(x)\) is a delta function (maximum clustering)
\(\alpha = \infty\), \(p(x)\) is Poisson distribution (no clustering)
Yield Equation

\[Y = \text{Prob (zero defect on a chip)} = p(0) \]

\[Y = (1 + \frac{A_d}{\alpha})^{-\alpha} \]

Example: \(A_d = 1.0, \alpha = 0.5, Y = 0.58 \)

Unclustered defects: \(\alpha = \infty \), \(Y = e^{-A_d} \)

Example: \(A_d = 1.0, \alpha = \infty, Y = 0.37 \)

too pessimistic!

Defect Level or Reject Ratio

- **Defect level** (DL) is the ratio of faulty chips among the chips that pass tests.
- DL is measured as *parts per million* (ppm).
- DL is a measure of the effectiveness of tests.
- DL is a quantitative measure of the manufactured product quality. For commercial VLSI chips a DL greater than 500 ppm is considered unacceptable.
Determination of DL

- From field return data: Chips failing in the field are returned to the manufacturer. The number of returned chips normalized to one million chips shipped is the DL.
- From test data: Fault coverage of tests and chip fallout rate are analyzed. A modified yield model is fitted to the fallout data to estimate the DL.

Modified Yield Equation

- Three parameters:
 - Fault density, $f = \text{average number of stuck-at faults per unit chip area}$
 - Fault clustering parameter, β
 - Stuck-at fault coverage, T
- The modified yield equation:
 $$Y(T) = (1 + TAf / \beta)^{-\beta}$$

Assuming that tests with 100% fault coverage ($T = 1.0$) remove all faulty chips,
 $$Y = Y(1) = (1 + Af / \beta)^{-\beta}$$
Defect Level

\[DL(T) = \frac{Y(T) - Y(1)}{Y(T)} = 1 - \frac{(\beta + TAf)^\beta}{(\beta + Af)^\beta} \]

Where \(T \) is the fault coverage of tests, \(Af \) is the average number of faults on the chip of area \(A \), \(\beta \) is the fault clustering parameter. \(Af \) and \(\beta \) are determined by test data analysis.

Summary

- VLSI yield depends on two process parameters, defect density \((d)\) and clustering parameter \((\alpha)\).
- Yield drops as chip area increases; low yield means high cost.
- Fault coverage measures the test quality.
- Defect level \((DL)\) or reject ratio is a measure of chip quality.
- \(DL \) can be determined by an analysis of test data.
- For high quality: \(DL < 500 \text{ ppm} \), fault coverage \(\sim 99\% \)