Lecture 2
VLSI Testing Process and Equipment

- Motivation
- Types of Testing
- Test Specifications and Plan
- Test Programming
- Test Data Analysis
- Automatic Test Equipment
- Parametric Testing
- Summary
Motivation

• Need to understand some *Automatic Test Equipment* (ATE) technology
 – Influences what tests are possible
 – Serious analog measurement limitations at high digital frequency or in the analog domain
 – Need to understand capabilities for digital logic, memory, and analog test in *System-on-a-Chip* (SOC) technology

• Need to understand parametric testing
 – Used to take setup, hold time measurements
 – Use to compute V_{IL}, V_{IH}, V_{OL}, V_{OH}, t_r, t_f, t_{pd}, I_{OL}, I_{OH}, I_{IL}, I_{IH}

Types of Testing

• *Verification testing, characterization testing*, or *design debug*
 – Verifies correctness of design and of test procedure
 – Usually requires correction to design

• *Manufacturing testing*
 – Factory testing of all manufactured chips for parametric faults and for random defects

• *Acceptance testing (incoming inspection)*
 – User (customer) tests purchased parts to ensure quality
Automatic Test Equipment Components

- Consists of:
 - Powerful computer
 - Powerful 32-bit Digital Signal Processor (DSP) for analog testing
 - Test Program (written in high-level language) running on the computer
 - Probe Head (actually touches the bare or packaged chip to perform fault detection experiments)
 - Probe Card or Membrane Probe (contains electronics to measure signals on chip pin or pad)
Characterization Test

- **Worst-case test**
 - Choose test that passes/fails chips
 - Select statistically significant sample of chips
 - Repeat test for every combination of 2+ environmental variables
 - Plot results in *Schmoo plot*
 - Diagnose and correct design errors

- **Continue throughout production life of chips to improve design and process to increase yield**

Schmoo Plot

![Schmoo Plot Image]

- V_{CC} 4.50 V
- 3.50 V
- 5.00 V
- 5.50 V
- t_{ODT} (nsec.)

* Acceptable Reading Combination
@ Unacceptable Reading Combination
Manufacturing Test

- Determines whether manufactured chip meets specs
- Must cover high % of modeled faults
- Must minimize test time (to control cost)
- No fault diagnosis
- Tests every device on chip
- Test at speed of application or speed guaranteed by supplier

Burn-in or Stress Test

- **Process:**
 - Subject chips to high temperature & over-voltage supply, while running production tests
- **Catches:**
 - *Infant mortality* cases – these are damaged chips that will fail in the first few days of operation – causes bad devices to actually fail before chips are shipped to customers
 - *Freak failures*
Types of Manufacturing Tests

- *Wafer sort or probe* test – done before wafer is scribed and cut into chips
 - Includes test site characterization – specific test devices are checked with specific patterns to measure:
 - Gate threshold
 - Polysilicon field threshold
 - Poly sheet resistance, etc.
- Packaged device tests

Sub-types of Tests

- *Parametric* – measures electrical properties of pin electronics – delay, voltages, currents, etc. – fast and cheap
- *Functional* – used to cover very high % of modeled faults – test every transistor and wire in digital circuits – long and expensive
Two Different Meanings of Functional Test

- **ATE and Manufacturing World** – any vectors applied to cover high % of faults during manufacturing test
- **Automatic Test-Pattern Generation World** – testing with verification vectors, which determine whether hardware matches its specification – typically have low fault coverage (< 70 %)

Test Specifications & Plan

- **Test Specifications:**
 - Functional Characteristics
 - Type of Device Under Test (DUT)
 - Physical Constraints – Package, pin numbers, etc.
 - Environmental Characteristics – supply, temperature, humidity, etc.
 - Reliability – acceptance quality level (defects/million), failure rate, etc.
- **Test plan generated from specifications**
 - Type of test equipment to use
 - Types of tests
 - Fault coverage requirement
Test Programming

- **DEVICE SPECIFICATIONS**
- **ARCHITECTURAL & LOGIC DESIGN, VERIFICATION & TEST GENERATION**

 - **TEST PLAN**
 - **VECTOR EDITOR**
 - **PHYSICAL DESIGN**

 Tester data, Types of tests, timing specs., etc.
 Vectors
 Pin assignment, Wafer map, etc.

 TEST PROGRAM GENERATOR

Test Data Analysis

- **Uses of ATE test data:**
 - Reject bad DUTs
 - Fabrication process information
 - Design weakness information

- Devices that did not fail are good only if tests covered 100% of faults

- **Failure mode analysis (FMA)**
 - Diagnose reasons for device failure, and find design and process weaknesses
 - Allows improvement of logic & layout design rules
ADVANTEST Model T6682 ATE

LTX FUSION HF ATE
Multi-site Testing – Major Cost Reduction

- One ATE tests several (usually identical) devices at the same time
- For both probe and package test
- DUT interface board has > 1 socket
- Add more instruments to ATE to handle multiple devices simultaneously
- Usually test 2 or 4 DUTS at a time, usually test 32 or 64 memory chips at a time
- Limits: # instruments available in ATE, type of handling equipment available for package

Set-up and Hold Time Tests
Wrap-Up

• Parametric tests – determine whether pin electronics system meets digital logic voltage, current, and delay time specs
• Functional tests – determine whether internal logic/analog sub-systems behave correctly
• ATE Cost Problems
 – Pin inductance (expensive probing)
 – Multi-GHz frequencies
 – High pin count (1024)
• ATE Cost Reduction
 – Multi-Site Testing
 – DFT methods like Built-In Self-Test

Economics of Design for Testability (DFT)

• Consider life-cycle cost; DFT on chip may impact the costs at board and system levels.
• Weigh costs against benefits
 • Cost examples: reduced yield due to area overhead, yield loss due to non-functional tests
 • Benefit examples: Reduced ATE cost due to self-test, inexpensive alternatives to burn-in test
Benefits and Costs of DFT

<table>
<thead>
<tr>
<th>Level</th>
<th>Design and test</th>
<th>Fabrication</th>
<th>Manuf. Test</th>
<th>Maintenance test</th>
<th>Diagnosis and repair</th>
<th>Service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boards</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

+ Cost increase
- Cost saving
+/- Cost increase may balance cost reduction

Summary

- Economics teaches us how to make the right trade-offs.
- It combines common sense, experience and mathematical methods.
- The overall benefit/cost ratio for design, test and manufacturing should be maximized; *one should select the most economic design over the cheapest design.*
- A DFT or test method should be selected to improve the product quality with minimal increase in cost due to area overhead and yield loss.
Yield Analysis and Product Quality

• Yield and manufacturing cost
• Clustered defect yield formula
• Defect level

VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process.
- A chip with no manufacturing defect is called a good chip.
- Fraction (or percentage) of good chips produced in a manufacturing process is called the yield. Yield is denoted by symbol \(Y \).
- Cost of a chip:
 \[
 \frac{\text{Cost of fabricating and testing a wafer}}{\text{Yield} \times \text{Number of chip sites on the wafer}}
 \]
Clustered VLSI Defects

- Unclustered defects
 - Wafer yield = 12/22 = 0.55

- Clustered defects (VLSI)
 - Wafer yield = 17/22 = 0.77

Yield Parameters

- Defect density \((d) \) = Average number of defects per unit of chip area
- Chip area \((A) \)
- Clustering parameter \((\alpha) \)
- Negative binomial distribution of defects,
 \[
p(x) = \text{Prob}(\text{number of defects on a chip} = x) = \frac{\Gamma(a+x)(Ad/\alpha)^x}{x!\Gamma(a)(1+Ad/\alpha)^{\alpha+x}}
\]

where \(\Gamma \) is the gamma function
- \(\alpha = 0 \), \(p(x) \) is a delta function (maximum clustering)
- \(\alpha = \infty \), \(p(x) \) is Poisson distribution (no clustering)
Yield Equation

\[Y = \text{Prob (zero defect on a chip)} = p(0) \]

\[Y = (1 + Ad / \alpha)^{-\alpha} \]

Example: \(Ad = 1.0, \alpha = 0.5, Y = 0.58 \)

Unclustered defects: \(\alpha = \infty, \; Y = e^{-Ad} \)

Example: \(Ad = 1.0, \alpha = \infty, Y = 0.37 \) too pessimistic!

Defect Level or Reject Ratio

- Defect level (DL) is the ratio of faulty chips among the chips that pass tests.
- DL is measured as parts per million (ppm).
- DL is a measure of the effectiveness of tests.
- DL is a quantitative measure of the manufactured product quality. For commercial VLSI chips a DL greater than 500 ppm is considered unacceptable.
Determination of DL

- From field return data: Chips failing in the field are returned to the manufacturer. The number of returned chips normalized to one million chips shipped is the DL.
- From test data: Fault coverage of tests and chip fallout rate are analyzed. A modified yield model is fitted to the fallout data to estimate the DL.

Modified Yield Equation

- Three parameters:
 - Fault density, $f = \text{average number of stuck-at faults per unit chip area}$
 - Fault clustering parameter, β
 - Stuck-at fault coverage, T
- The modified yield equation:

$$Y(T) = (1 + TF / \beta)^{-\beta}$$

Assuming that tests with 100% fault coverage ($T = 1.0$) remove all faulty chips,

$$Y = Y(1) = (1 + Af / \beta)^{-\beta}$$
Defect Level

\[
DL(T) = \frac{Y(T) - Y(1)}{Y(T)} = 1 - \frac{(\beta + TAf)^\beta}{(\beta + Af)^\beta}
\]

Where \(T \) is the fault coverage of tests, \(Af \) is the average number of faults on the chip of area \(A \), \(\beta \) is the fault clustering parameter. \(Af \) and \(\beta \) are determined by test data analysis.

Summary

• VLSI yield depends on two process parameters, defect density \((d)\) and clustering parameter \((\alpha)\).
• Yield drops as chip area increases; low yield means high cost.
• Fault coverage measures the test quality.
• Defect level (DL) or reject ratio is a measure of chip quality.
• DL can be determined by an analysis of test data.
• For high quality: DL < 500 ppm, fault coverage ~ 99%