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Bell States and Bell Basis
• Maximally Entangled States

– Correlation between two qubits are fully specified
– Four Bell states form orthonormal basis for two-qubit composite system

– Entangled states cannot be represented as a product of states from 
component state spaces
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Quantum Teleportation
• Alice and Bob, in remote locations, share one qubit each from a Bell state

– Alice has qubit 1 and Bob has qubit 2

• Alice has a third qubit in state                           .
– Can Alice send the qubit to Bob using only classical channel?

– Total State
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Quantum Teleportation: continued

• Alice can make a Bell-basis measurement                         .
– Answer is 2-bit classical information describing Bell basis she has in qubit 1 & 3
– For example, she needs a quantum circuit

– Alice sends the two classical bits to Bob over classical channel
– Based on Alice’s information, Bob applies following operation to his qubit
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Entanglement Swapping
• If Alice’s qubit #3 was originally entangled with another qubit #4, 

– After teleportation, qubit #3 and #1 are “destroyed” by the measurement in 
teleportation process

– The state of qubit #3 is teleported to qubit #2
– Since qubit #3 and qubit #4 were originally entangled, now qubit #4 and

qubit #2 are entangled
– Qubit #4 and qubit #2 never directly interacted, yet ends up entangled

| ⟩𝝍! 𝟑𝟒 = ⁄| ⟩𝟎 𝟑| ⟩𝟎 𝟒+| ⟩𝟏 𝟑| ⟩𝟏 𝟒 𝟐 | ⟩𝝍! 𝟏𝟐 = ⁄| ⟩𝟎 𝟏| ⟩𝟎 𝟐 +| ⟩𝟏 𝟏 | ⟩𝟏 𝟐 𝟐

Alice has qubits 1, 3, 4 Bob has qubit 2

| ⟩𝝍! 𝟐𝟒 = ⁄| ⟩𝟎 𝟐| ⟩𝟎 𝟒 + | ⟩𝟏 𝟐| ⟩𝟏 𝟒 𝟐
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Hong-Ou-Mandel Interference
• Interference of identical particles at a 50/50 beamsplitter

Liu, Odom, Yamamoto & Tarucha, Nature 391, 263 (1998)
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Atom-Photon Entanglement
• Consider hydrogen-like atom

– One electron, nuclear spin I = ½ 
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L.-M. Duan et al., Phys. Rev. A73, 062324 (2006)
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Atom-Atom Entanglement via Photons
• Two identical setups at Alice and Bob

– Coincidence detection in both D1 and D2 heralds successful entanglement 
of the two atoms i at Alice and j at Bob

L.-M. Duan et al., Phys. Rev. A73, 062324 (2006)
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