Distributing Quantum Entanglement over Communication Networks

Evolution of Communication Networks

Interface: Quantum Memories & Photons

- Early Ideas: State Transfer between Quantum Nodes
 - Memory-photon coupling enhanced by optical cavities
 - Experimental demonstration of atoms in cavities
 - Technical Challenges for "Pitch and Catch"
 - Precise pulse tailoring for efficient transfer
 - Photon loss leads to qubit losses
 - "Capturing" the photonic qubit by the memory qubit is challenging

Cirac, Zoller, Kimble and Mabuchi, PRL 78, 3221 (1997)

Dukeuniversity

Interface: Quantum Memories & Photons

- Early Ideas: State Transfer between Quantum Nodes
 - Memory-photon coupling enhanced by optical cavities
 - Experimental demonstration of atoms in cavities
 - Technical Challenges for "Pitch and Catch"
 - Precise pulse tailoring for efficient transfer
 - Photon loss leads to qubit losses
 - "Capturing" the photonic qubit by the memory qubit is challenging

ECE 590.0² Spring 2

Key Attributes of Quantum Networks

- Essence of "(Quantum) Data Communication between Machines"
 - Distance of Communications
 - Within a quantum processor node (~1 mm 1 cm)
 - Between processor nodes ($\sim 10 \text{ cm} 10 \text{ m}$)
 - Long-distance nodes (~100 m 10,000 km)
 - Types of Applications
 - Secret key generation (measurements on both ends: easy!!)
 - Quantum repeaters (entanglement swapping operation)
 - Generic quantum interconnects (remote quantum gates)

Dukeuniversity

Generation of Remotely Entangled Memories

- When both photon detectors click, it signals successful entanglement between A&B
- With a good quantum memory, the generated entanglement can be stored and used for deterministic quantum logic operation
- Opportunities for photonics technology

CUNIVERSITY

- Optical networking to construct quantum networks
- Manipulation of photonic qubits (frequency conversion, etc.)

Remote CNOT Gate Construction

• Logic gates between two qubits can be realized without direct interaction, if entanglement is used

• Extremely useful for scalable distributed quantum multi-computer!!

Gottesman and Chuang, Nature 402, 390 (1999) Zhou, Leung and Chuang, PRA 62, 052316 (2000)

MUSIQC: Multi-Tier Approach to Scalability

- Quantum Computation in Small Coulomb Crystals
 - Linear ion chain with 20-100 ions (Elementary Logic Unit, or ELU)
 - Arbitrary quantum logic operation among the qubits in the chain
- Interconnect of Multiple Coulomb Crystals via Photonic Channel
 - Reconfigurable interconnect using optical crossconnect (OXC) switches
 - -Efficient optical interface for remote entanglement generation

Dukeuniversity

Beam Steering Optical Switches

Only feasible Technology to scale to Large Portcount
Proper design eliminates path length-dependent loss

Optical switches developed in early 2000s, deployed in datacenters today

Dukeuniversity

Optical Fiber Communications Conference San Diego, CA, March 8-12th, 2020 Lucent Technologies Bell Labs Innovations

World's Largest Optical Switch

1296 x 1296 **Optical Switch**

256 x 256 Optical Switch

Dukeuniversity

Aksyuk et al., IEEE PTL 15, 587 (2003)

> **Optical Fiber Communications Conference** San Diego, CA, March 8-12th, 2020

Lucent Technologies Bell Labs Innovations

J. Kim et al., IEEE PTL 15, 1537 (2003)

Quantum Repeater Platform

- Quantum Repeater for Long-Distance Quantum Communication
 - Small quantum computer with two optical ports function as a quantum repeater

Entangled!!

The Protocol: Ion-Photon Entanglement

CUNIVERSITY

Heralded coincident events $(p_{suc}=1/4)$: $(H_1 \& V_2) \text{ or } (V_1 \& H_2) \rightarrow |\downarrow\uparrow\rangle - |\downarrow\uparrow\rangle$ $(H_1 \& V_1) \text{ or } (V_2 \& H_2) \rightarrow |\downarrow\uparrow\rangle + |\downarrow\uparrow\rangle$ $(H_1 \& H_1) \text{ or } (H_2 \& H_2) \rightarrow |\downarrow\downarrow\rangle$ $(V_1 \& V_1) \text{ or } (V_2 \& V_2) \rightarrow |\uparrow\uparrow\rangle$ $R_{ent} = \frac{1}{4} R \left(\eta_D \cdot F \cdot \frac{d\Omega}{4\pi}\right)^2$

> *R*: Repetition Rate $\eta_{\rm D}$: Detector Efficiency $d\Omega$: Collection Solid Angle *F*: Collection Efficiency $R_{ent} = 0.001 - 0.025 s^{-1}$

Southwest Quantum Information and Technology Workshop University of Oregon, Eugene, OR, February 8-10th, 2020

The Protocol: Ion-Photon Entanglement

CUNIVERSITY

Heralded coincident events $(p_{suc}=1/4)$: $(H_1 \& V_2)$ or $(V_1 \& H_2) \rightarrow |\downarrow\uparrow\rangle - |\downarrow\uparrow\rangle$ $(H_1 \& V_1)$ or $(V_2 \& H_2) \rightarrow |\downarrow\downarrow\rangle$ $(H_1 \& H_1)$ or $(H_2 \& H_2) \rightarrow |\downarrow\downarrow\rangle$ $(V_1 \& V_1)$ or $(V_2 \& V_2) \rightarrow |\downarrow\downarrow\rangle$ $R_{ent} = \frac{1}{4} R \left(\eta_D \cdot F \cdot \frac{d\Omega}{4\pi}\right)^2$ R = 470 kHz $p = \eta_D \cdot F \cdot \frac{d\Omega}{4\pi} = (0.35)(0.14)(0.10)$ $R_{ent} = 4.5 s^{-1}$

Hucul et al, (UMD) Nature Phys. 11, 37 (2015)

Oxford Result: 180 s⁻¹ with Sr⁺ ions Stephenson et al., arXiv:1911.10841 (2019) ~10,000 s⁻¹ is feasible

Southwest Quantum Information and Technology Workshop University of Oregon, Eugene, OR, February 8-10th, 2020

Small-Volume Optical Cavities

Fully Integrated Wavelength Conversion

- Fully integrated device to convert 650nm photon to 1595nm
- Two-step conversion to eliminate spontaneous parametric down-conversion (SPDC) and Stokes-Raman noise

Double-pass configuration w/ integrated U-bend & WDMs

Fully Integrated Wavelength Conversion

• Fully integrated device to convert 650nm photon to 1595nm

uke⊧

• Two-step conversion to eliminate spontaneous parametric down-conversion (SPDC) and Stokes-Raman noise

Wavelength Conversion from Ions

- Converting emitted photons from an ion
 - 493nm photon from Ba⁺ ion converted to 780nm

ECE 590.01 Quantum Engineering with Atoms Spring 2020 Semester, Duke University

