Parallel Amplifiers for 3D Ultrasonic Imaging

Brooks Lindsey
April 29, 2009
Overview

• Highly parallel low-noise preamps
• First level of amplification seen by transformed voltage (mV)
• Output stage matches Z_{in} of scanner
Block diagram

V_r

Op amp

Buffer

Protection circuit

To scanner front end

Common mode noise rejection

Source follower (common drain)

Z_{out} to match front end of scanner

Protect against reverse bias due to shared elements

128 channel
Amplifier Design

- Two-stage OTA design
- Design procedure of Allen and Holberg
 - Diff. pair with output stage, negative feedback
- Design specs include:
 - 100 μA tail current on M5
 - GB = 25 MHz
 - Drive output buffer (2 pF)
 - Gain of 9-12 dB
 - Phase margin 60°-80°
Single-channel amplifier schematic
DC and Transient Analyses

DC
- Reveals all devices in sat.
- Produces desired tail current

Transient
- 11.9 dB gain
- Input signal:
 - amplitude at 1 mV, 5 mV, 10 mV
 - 2.5 MHz
- Approximate real-world input as sine wave
Measured input signal

Measured output voltage from single piezoelectric element in pitch-catch experiment
AC Analysis

- Parameters
 - Everything driven at 2.5 MHz, but transducers exhibit broadband response
 - Imaging system drops off beyond 3.0 MHz
 - Achieving even higher BW desirable for other apps, but not necessary here
 - Decreasing C_C
 - Increase W/L of M1, M2 (n-devices of diff. pair)
AC Analysis

Gain margin: -19.4°
Phase margin: 78.8°
Complete 1-channel schematic

Drive scanner front-end (20 kΩ, 3pF)
Output buffer (Source follower)
Design results

- 11.8 dB gain
- 96 μA diff. pair tail current
- GB = 29 MHz
- Gain margin: -19.4°
- Phase margin: 78.8°
- Drive scanner front-end impedance
- Handles desired voltage ranges
- Power dissipated 18.3 mW (Eldo sim)
Layout considerations

• Low noise extremely important
 – Ground traces between signal traces
• Folding, multifinger transistors
• Estimated 1-channel area 5340 μm^2
 – Based on known W/L ratios and min. gate length, known R and C values
 – Estimated area for spacing and ground traces
 – Suggests adequate room for multi-channel
• Create replicable unit cell
Primitive floorplan

GND

NMOS

C

PMOS

VDD
Completed Layout

- Individual project
- From-scratch layout
- Common centroid resistors, capacitors
- Multifinger transistors
- Some potential for area reduction remains
DRC and LVS

DRC clean

Note: DRC RuleCheck DRC_OFFGRID_POLY completed. Result count: 0.
Note: DRC RuleCheck DRC_OFFGRID_ELECTRODE completed. Result count: 0.
Note: DRC completed. Total Rule Checks: 120, Total Results: 0. Total Original Geometries: 3633; CPU Time: 0.11, REAL Time: 0.133072.

LVS, 0% tolerance

<table>
<thead>
<tr>
<th>DISC#</th>
<th>LAYOUT</th>
<th>SOURCE</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23(-103.600,-107.500) c</td>
<td>/c1 c(cap) c: 1000 ff</td>
<td>0.0708%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c: 999.292 ff</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24(-102.700,-189.500) c</td>
<td>/c2 c(cap) c: 2000 ff</td>
<td>0.0708%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c: 1998.58 ff</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30(-32.700,-189.800) c</td>
<td>/c3 c(cap) c: 12000 ff</td>
<td>0.0708%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c: 11991.5 ff</td>
<td></td>
</tr>
</tbody>
</table>

LVS, 1% tolerance

DUKE ECE

DUKE BME
Duke 3DUS preamp

GND

VDD

LVS

INITIAL NUMBERS OF OBJECTS

<table>
<thead>
<tr>
<th>Layout</th>
<th>Source</th>
<th>Component Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>Nets</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Instances</td>
<td>16</td>
<td>MN (3 pins)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>MP (3 pins)</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>c (3 pins)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>c (6 pins)</td>
</tr>
<tr>
<td>Total Inst</td>
<td>56</td>
<td>16</td>
</tr>
</tbody>
</table>

NUMBERS OF OBJECTS AFTER TRANSFORMATION

<table>
<thead>
<tr>
<th>Layout</th>
<th>Source</th>
<th>Component Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nets</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Instances</td>
<td>5</td>
<td>MN (3 pins)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MP (3 pins)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>c (3 pins)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>c (6 pins)</td>
</tr>
<tr>
<td>Total Inst</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* = Number of objects in layout different from number in source
16 channel spread
16 channel spread

- Replicated of single channel module
- Ground planes between each channel
- 8 of these for desired amp
- DRC clean
Chip area, 16 channels

- $1493.6 \text{ \mu m} \times 1935.2 \text{ \mu m}$
- 2.89 mm^2
- Quite large (1 chan: $180,650 \text{ \mu m}^2$)
Remaining Improvements

• Additional simulation/analog design preferred before fabrication
• Subsequent layout
• Protection circuit design
 – Simulations run modeled on protection circuit (diode-based) implemented in ultrasound scanner
• Perform detailed loaded/unloaded scanner impedance measurements
 – Piezocad matching network simulations
Conclusions, abilities

• Layout under control
• Design and simulation improving
• Modular layout exhibited
• Still room for improvement on combining analog design elements
• Capable of executing design/layout process