4-Bit DAC

Matthew Roberts
Outline

• Abstract
• Schematic
• Output
• Simulation Plan and Results
• Layout
• Final Specifications
Abstract

• The objective is to design a device that will extract an analog signal given a series of digital codes with the proper time delay.
$V_{out} = \frac{V_{dd}}{2^N} \left(B_{N-1} 2^{N-1} + B_{N-2} 2^{N-2} + \ldots + B_0 2^0 \right) = \frac{V_{dd}}{16} \left(8 \left(B_3 \right) + 4 \left(B_2 \right) + 2 \left(B_1 \right) + B_0 \right) = $

$V_{dd} \left(\frac{1}{2} B_3 + \frac{1}{4} B_2 + \frac{1}{8} B_1 + \frac{1}{16} B_0 \right)$

$R = 8k\text{Ohm}$
\Delta V = V_{\text{max}}/2^n = 3.75/16 = 0.23V
Simulation Plan

• Test the linearity
• Use pulse sources on each input to run through all possible input combinations
• Generate an approximation of a ramp function.
Simulation Results - Output
Overall Schematic
Op-amp schematic
Layout
Final Specifications

• Vdd = 5V
• Amplifier Power Dissipation = 5V*0.6mA=3mW
• Resistor power dissipation (WC) – (5V)^2/24kOhm=1mW
• Total Power Dissipation – 4mW
• For the output stage: The following spec was met

\[\Delta t < \frac{T_{\text{min}}}{2^{N+1}}; \frac{\Delta V}{SR} = \frac{V_{dd}}{2^N} < \frac{1}{f_{\text{max}} 2^{N+1}}; \frac{V_{dd}}{SR} < \frac{1}{2 f_{\text{max}}}; SR > 2V_{dd} f_{\text{max}} = 2 \times 5V \times 100 MHz \]

\[SR > \frac{mV}{ps} \]
Final Specifications (cont.)

- Components
 - 5 resistors with resistance 2R
 - 3 resistors with resistance R
 - Op-amp
 - 8 transistors
 - 2 resistors
 - 1 capacitor
- Unit Resistance (R) = 8kOhm
 - 2R = 16kOhm
- Area of layout = 390um * 458um = 178,620(um)^2 = 0.18 (mm)^2
Design Challenges

• The biggest design challenge was figuring out some LVS problems with device models.

• It was also a challenge to modify an existing op-amp layout to suit my purposes and to hook up a large number of resistors in a common-centroid layout.

• The rest of the design process went very smoothly