Memory Design

- Memory Types
- Memory Organization
- ROM design
- RAM design
- PLA design

Semiconductor Memory Classification

<table>
<thead>
<tr>
<th>Read-Write Memory</th>
<th>Non-Volatile Read-Write Memory</th>
<th>Read-Only Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access</td>
<td>Non-Random Access</td>
<td>EPROM</td>
</tr>
<tr>
<td>SRAM</td>
<td>FIFO</td>
<td>Mask-Programmed</td>
</tr>
<tr>
<td>DRAM</td>
<td>LIFO</td>
<td>Programmable (PROM)</td>
</tr>
<tr>
<td></td>
<td>Shift Register</td>
<td>FLASH</td>
</tr>
<tr>
<td></td>
<td>CAM</td>
<td></td>
</tr>
</tbody>
</table>
Memory Timing: Definitions

- **Read cycle**
- **Write cycle**
- **Read access**
- **Write access**
- **Data valid**
- **Data written**

READ

WRITE

DATA
Memory Architecture: Decoders

Intuitive architecture for $N \times M$ memory
Too many select signals:
N words == N select signals

Decoder reduces the number of select signals
$K = \log_2 N$
Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

- A_K, A_{K11}, A_{L21}
- 2^{L2K} Bit line
- $M.2^K$
- Sense amplifiers / Drivers
- Column decoder
- A_0, A_{K21}
- Input-Output (M bits)

Amplify swing to rail-to-rail amplitude
Selects appropriate word
Hierarchical Memory Architecture

Advantages:
1. Shorter wires within blocks
2. Block address activates only 1 block => power savings
Read-Only Memory Cells

1

Diode ROM

0

MOS ROM 1

MOS ROM 2
ROM Example

• 4-word x 6-bit ROM
 – Represented with dot diagram
 – Dots indicate 1’s in ROM

Word 0: 010101
Word 1: 011001
Word 2: 100101
Word 3: 101010

Looks like 6 4-input pseudo-nMOS NORs
MOS NOR ROM Layout

Cell (9.5λ x 7λ)

Programming using the Active Layer Only

- Polysilicon
- Metal1
- Diffusion
- Metal1 on Diffusion
MOS NOR ROM Layout

Cell (11\(\lambda\) x 7\(\lambda\))

Programming using the Contact Layer Only

- Polysilicon
- Metal1
- Diffusion
- Metal1 on Diffusion
MOS NAND ROM

All word lines high by default with exception of selected row
MOS NAND ROM Layout

Cell (8\(\lambda\) x 7\(\lambda\))

Programming using the Metal-1 Layer Only

No contact to VDD or GND necessary; drastically reduced cell size
Loss in performance compared to NOR ROM
NAND ROM Layout

Cell (5\(\lambda\) x 6\(\lambda\))

Programming using Implants Only

- Polysilicon
- Threshold-altering implant
- Metal1 on Diffusion
Decreasing Word Line Delay

(a) Driving the word line from both sides

(b) Using a metal bypass

Driver

Polysilicon word line

Metal word line

Metal bypass

WL

K cells

WL

Polysilicon word line
Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.
Read-Write Memories (RAM)

- **STATIC (SRAM)**
 - Data stored as long as supply is applied
 - Large (6 transistors/cell)
 - Fast
 - Differential

- **DYNAMIC (DRAM)**
 - Periodic refresh required
 - Small (1-3 transistors/cell)
 - Slower
 - Single Ended
6-transistor CMOS SRAM Cell
6T-SRAM — Layout

V_{DD}

M1 M3

M5 M6

WL

Q Q̅

GND

BL BL̅
Statue of Goethe and Schiller: the German National Theater, Weimar
3-Transistor DRAM Cell

No constraints on device ratios
Reads are non-destructive
Value stored at node X when writing a “1” = $V_{WWL} - V_{Tn}$
3T-DRAM — Layout

BL2 BL1 GND

RWL M3

WWL M2

M1
1-Transistor DRAM Cell

Write: C_S is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes place between bit line and storage capacitance

\[\Delta V = V_{BL} - V_{PRE} = V_{BIT} - V_{PRE} \left(\frac{C_S}{C_S + C_{BL}} \right) \]

Voltage swing is small; typically around 250 mV.
DRAM Cell Observations

- 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- DRAM memory cells are single-ended in contrast to SRAM cells.
- The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.
- When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}
1-T DRAM Cell

Cross-section

Uses Polysilicon-Diffusion Capacitance
Expensive in Area (trend now is to use trench capacitors)
Periphery

- Decoders
- Sense Amplifiers
- Input/Output Buffers
- Control / Timing Circuitry
Row Decoders
Collection of 2^M complex logic gates
Organized in regular and dense fashion

(N)AND Decoder

\[WL_0 = A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 \]
\[WL_{511} = \bar{A}_0 \bar{A}_1 \bar{A}_2 \bar{A}_3 \bar{A}_4 \bar{A}_5 \bar{A}_6 \bar{A}_7 \bar{A}_8 \bar{A}_9 \]

NOR Decoder

\[WL_0 = A_0 + A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9 \]
\[WL_{511} = \bar{A}_0 + \bar{A}_1 + \bar{A}_2 + \bar{A}_3 + \bar{A}_4 + \bar{A}_5 + \bar{A}_6 + \bar{A}_7 + \bar{A}_8 + \bar{A}_9 \]
Hierarchical Decoders

Multi-stage implementation improves performance

NAND decoder using 2-input pre-decoders
Dynamic Decoders

2-input NOR decoder

2-input NAND decoder
4-to-1 tree based column decoder

Number of devices drastically reduced
Delay increases quadratically with # of sections; prohibitive for large decoders
Solutions: buffers
 progressive sizing
 combination of tree and pass transistor approaches
PLA versus ROM

- Programmable Logic Array
 - structured approach to random logic
 - “two level logic implementation”
 - NOR-NOR (product of sums)
 - NAND-NAND (sum of products)

SIMILAR TO ROM

- Main difference
 - ROM: fully populated
 - PLA: one element per minterm

Note: Importance of PLA’s has drastically reduced
 1. slow
 2. better software techniques (multi-level logic synthesis)

But …
Programmable Logic Array

Pseudo-NMOS PLA

AND-plane OR-plane
Dynamic PLA

AND-plane

OR-plane

GND

V_{DD}

X_{0}

X_{1}

X_{2}

\bar{X}_{0}

\bar{X}_{1}

\bar{X}_{2}

\bar{f}_{0}

\bar{f}_{1}

\bar{f}_{ \text{AND}}

f_{ \text{AND}}

f_{ OR}

f_{ OR}
PLA Layout

And-Plane

Or-Plane

Pull-up devices

x₀ x₀ x₁ x₂ x₂

f₀ f₁

V_{DD} GND
CAMs

- Extension of ordinary memory (e.g. SRAM)
 - Read and write memory as usual
 - *Also match* to see which words contain a *key*
10T CAM Cell

- Add four match transistors to 6T SRAM
 - 56 x 43 λ unit cell
CAM Cell Operation

• Read and write like ordinary SRAM
• For matching:
 – Leave wordline low
 – Precharge matchlines
 – Place key on bitlines
 – Matchlines evaluate
• Miss line
 – Pseudo-nMOS NOR of match lines
 – Goes high if no words match