MOS Transistor Theory

• So far, we have viewed a MOS transistor as an ideal switch (digital operation)
 – Reality: less than ideal
Introduction

• So far, we have treated transistors as ideal switches

• An ON transistor passes a finite amount of current
 – Depends on terminal voltages
 – Derive current-voltage (I-V) relationships

• Transistor gate, source, drain all have capacitance
 – $I = C \left(\frac{\Delta V}{\Delta t} \right) \Rightarrow \Delta t = \frac{C}{I} \Delta V$
 – Capacitance and current determine speed

• Also explore what a “degraded level” really means
MOS Transistor Theory

• Study conducting channel between source and drain
 • Modulated by voltage applied to the gate (voltage-controlled device)
 • nMOS transistor: majority carriers are electrons (greater mobility), p-substrate doped (positively doped)
 • pMOS transistor: majority carriers are holes (less mobility), n-substrate (negatively doped)
Terminal Voltages

- Mode of operation depends on V_g, V_d, V_s
 - $V_{gs} = V_g - V_s$
 - $V_{gd} = V_g - V_d$
 - $V_{ds} = V_d - V_s = V_{gs} - V_{gd}$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \geq 0$

- nMOS body is grounded. First assume source is 0 too.

- Three regions of operation
 - Cutoff
 - Linear
 - Saturation
Gate Biasing

- $V_{gs}=0$: no current flows from source to drain (insulated by two reverse biased pn junctions)

- $V_{gs}>0$: electric field created across substrate

- Electrons accumulate under gate: region changes from p-type to n-type
- Conduction path between source and drain
nMOS Device Behavior

- **p-substrate**
- **Polysilicon gate**
- **Oxide insulator**
- **Inversion Region (n-type)**

<table>
<thead>
<tr>
<th>$V_{gs} << V_t$</th>
<th>$V_{gs} = V_t$</th>
<th>$V_{gs} > V_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulation mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depletion mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversion mode</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Enhancement-mode transistor:** Conducts when gate bias $V_{gs} > V_t$
- **Depletion-mode transistor:** Conducts when gate bias is zero
nMOS Cutoff

- No channel
- $I_{ds} = 0$
nMOS Linear

- Channel forms
- Current flows from d to s
 - e^- from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor
nMOS Saturation

• Channel pinches off
• I_{ds} independent of V_{ds}
• We say current saturates
• Similar to current source
I-V Characteristics

• In linear region, I_{ds} depends on
 – How much charge is in the channel?
 – How fast is the charge moving?
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel

\[Q_{\text{channel}} = \]

SiO_2 gate oxide (good insulator, \(\varepsilon_{\text{ox}} = 3.9 \))
Channel Charge

• MOS structure looks like parallel plate capacitor while operating in inversion
 – Gate – oxide – channel

• $Q_{\text{channel}} = CV$

• $C =$
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel
- \(Q_{\text{channel}} = CV \)
- \(C = C_g = \frac{\varepsilon_{\text{ox}} WL}{t_{\text{ox}}} = C_{\text{ox}} WL \)
- \(V = \)

![MOS diagram](image)

- \(C_{\text{ox}} = \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}} \)
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel

- $Q_{\text{channel}} = CV$
- $C = C_g = \varepsilon_{\text{ox}} WL/t_{\text{ox}} = C_{\text{ox}} WL$
- $V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t$

\[C_{\text{ox}} = \varepsilon_{\text{ox}} / t_{\text{ox}} \]
Carrier velocity

- Charge is carried by e^-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v =$
Carrier velocity

• Charge is carried by e-
• Carrier velocity v proportional to lateral E-field between source and drain
• $v = \mu E$ \quad μ called mobility
• $E =$
Carrier velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ \(\mu\) called mobility
- $E = \frac{V_{ds}}{L}$
- Time for carrier to cross channel:
 - $t =$
Carrier velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
 - $v = \mu E$ \hspace{1cm} μ called mobility
 - $E = \frac{V_{ds}}{L}$
- Time for carrier to cross channel:
 - $t = \frac{L}{v}$
nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} =$$
nMOS Linear I-V

• Now we know
 – How much charge Q_{channel} is in the channel
 – How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$
nMOS Linear I-V

• Now we know
 – How much charge Q_{channel} is in the channel
 – How much time t each carrier takes to cross

\[
I_{ds} = \frac{Q_{\text{channel}}}{t} \\
= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \\
= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \\
\beta = \mu C_{\text{ox}} \frac{W}{L}
\]
nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

\[I_{ds} = \]
nMOS Saturation I-V

• If $V_{gd} < V_t$, channel pinches off near drain
 – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
• Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
nMOS Saturation I-V

• If $V_{gd} < V_t$, channel pinches off near drain
 – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
• Now drain voltage no longer increases current

\[
I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}
\]

\[
= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2
\]
nMOS I-V Summary

- *Shockley* 1st order transistor models

\[I_{ds} = \begin{cases}
0 & V_{gs} < V_t \\
\beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} \\
\frac{\beta}{2} (V_{gs} - V_t)^2 & V_{ds} > V_{dsat}
\end{cases} \]

cutoff
linear
saturation
Current-Voltage Relations

Linear Region: \(V_{DS} \leq V_{GS} - V_T \)

\[
I_D = k_n' \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)
\]

with

\[k_n' = \mu_n C_{ox} = \frac{\mu_n e_{ox}}{t_{ox}} \]

Process Transconductance Parameter

Saturation Mode: \(V_{DS} \geq V_{GS} - V_T \)

\[
I_D = \frac{k_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})
\]

Channel Length Modulation
Current-Voltage Relations

\(k_n' \): transconductance of transistor

\(\frac{W}{L} \): width-to-length ratio

- As \(W \) increases, more carriers available to conduct current.

- As \(L \) increases, \(V_{ds} \) diminishes in effect (more voltage drop). Takes longer to push carriers across the transistor, reducing current flow.
Example

• For a 0.6 μm process
 – From AMI Semiconductor
 – $t_{ox} = 100 \text{ Å}$
 – $\mu = 350 \text{ cm}^2/\text{V} \cdot \text{s}$
 – $V_t = 0.7 \text{ V}$

• Plot I_{ds} vs. V_{ds}
 – $V_{gs} = 0, 1, 2, 3, 4, 5$
 – Use $W/L = 4/2 \lambda$

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A/V^2$$
pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm2/V*s in AMI 0.6 μm process
- Thus pMOS must be wider to provide same current
 - In this class, assume $\mu_n / \mu_p = 2$ to 3
Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion
Gate Capacitance

- Approximate channel as connected to source
- \(C_{gs} = \varepsilon_{ox} WL/t_{ox} = C_{ox} WL = C_{\text{permicron}} W \)
- \(C_{\text{permicron}} \) is typically about 2 fF/\(\mu \)m
The Gate Capacitance

\[C_{\text{gate}} = \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}} WL \]
Diffusion Capacitance

- C_{sb}, C_{db}
- Undesirable, called *parasitic* capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g for contacted diff
 - $\frac{1}{2} C_g$ for uncontacted
 - Varies with process
Diffusion Capacitance

\[C_{\text{diff}} = C_{\text{bottom}} + C_{\text{sw}} = C_j \times \text{AREA} + C_{jsw} \times \text{PERIMETER} \]

\[= C_j L_S W + C_{jsw} (2L_S + W) \]
Parasitic Resistances

\[R_S = \left(\frac{L_S}{W}\right)R_{\square} + R_C \]
\[R_D = \left(\frac{L_D}{W}\right)R_{\square} + R_C \]

- \(R_C \): contact resistance
- \(R_{\square} \): sheet resistance per square of drain-source diffusion
Body Effect

- Many MOS devices on a common substrate
 - Substrate voltage of all devices are normally equal
- But several devices may be connected in series
 - Increase in source-to-substrate voltage as we proceed vertically along the chain

Net effect: slight increase in threshold voltage V_t, $V_{t2} > V_{t1}$
Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing V_{DD}
Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing V_{DD}
- $V_g = V_{DD}$
 - If $V_s > V_{DD} - V_t$, $V_{gs} < V_t$
 - Hence transistor would turn itself off
- nMOS pass transistors pull no higher than $V_{DD} - V_{tn}$
 - Called a degraded “1”
 - Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}
Pass Transistor Ckts

\[V_{DD} \]

\[V_{SS} \]
Pass Transistor Ckts

\[V_s = V_{DD} - V_{tn} \]

\[V_s = |V_{tp}| \]

\[V_{SS} \]
Effective Resistance

- Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay
RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C

- Capacitance proportional to width
- Resistance inversely proportional to width
RC Values

• Capacitance
 – $C = C_g = C_s = C_d = 2 \text{ fF/\mu m of gate width}$
 – Values similar across many processes

• Resistance
 – $R \approx 6 \text{ K\Omega in 0.6\mu m process}$
 – Improves with shorter channel lengths

• Unit transistors
 – May refer to minimum contacted device $(4/2 \lambda)$
 – Or maybe 1 \mu m wide device
 – Doesn’t matter as long as you are consistent
Activity

1) If the width of a transistor increases, the current will
 increase decrease not change

2) If the length of a transistor increases, the current will
 increase decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will
 increase decrease not change

4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change

5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will
 increase decrease not change
Activity

1) If the width of a transistor increases, the current will **increase**
2) If the length of a transistor increases, the current will **decrease**
3) If the supply voltage of a chip increases, the maximum transistor current will **not change**
4) If the width of a transistor increases, its gate capacitance will **increase**
5) If the length of a transistor increases, its gate capacitance will **decrease**
6) If the supply voltage of a chip increases, the gate capacitance of each transistor will **not change**
DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter
 - When $V_{\text{in}} = 0$ -> $V_{\text{out}} = V_{\text{DD}}$
 - When $V_{\text{in}} = V_{\text{DD}}$ -> $V_{\text{out}} = 0$
 - In between, V_{out} depends on transistor size and current
 - By KCL, must settle such that $I_{\text{dsn}} = |I_{\text{dsp}}|$
 - We could solve equations
 - But graphical solution gives more insight
Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} <$</td>
<td>$V_{gsn} >$</td>
<td>$V_{gsn} >$</td>
</tr>
<tr>
<td>$V_{dsn} <$</td>
<td>$V_{dsn} <$</td>
<td>$V_{dsn} >$</td>
</tr>
</tbody>
</table>

![nMOS Circuit Diagram]

- **V_{DD}**: Power supply
- **V_{in}**: Input voltage
- **I_{dsp}**: Drain-source current flowing upwards
- **I_{dsn}**: Drain-source current flowing downwards
- **V_{out}**: Output voltage
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{gsn} < V_{tn})</td>
<td>(V_{gsn} > V_{tn})</td>
<td>(V_{gsn} > V_{tn})</td>
</tr>
<tr>
<td>(V_{dsn} < V_{gsn} - V_{tn})</td>
<td>(V_{dsn} < V_{gsn} - V_{tn})</td>
<td>(V_{dsn} > V_{gsn} - V_{tn})</td>
</tr>
</tbody>
</table>
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
</tbody>
</table>

- $V_{gsn} = V_{in}$
- $V_{dsn} = V_{out}$

![nMOS Circuit Diagram]

Diagram shows a nMOS transistor with V_{DD}, V_{in}, I_{dsp}, and V_{out}. The transistor is in a linear region.
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
<tr>
<td>$V_{out} < V_{in} - V_{tn}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$V_{gsn} = V_{in}$

$V_{dsn} = V_{out}$
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} >$</td>
<td>$V_{gsp} <$</td>
<td>$V_{gsp} <$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} >$</td>
<td>$V_{dsp} <$</td>
</tr>
</tbody>
</table>
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
</tbody>
</table>

![pMOS Diagram]
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
</tbody>
</table>

$V_{gsp} = V_{in} - V_{DD}$

$V_{tp} < 0$

$V_{dsp} = V_{out} - V_{DD}$
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td>$V_{in} > V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{out} > V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
</tr>
</tbody>
</table>

$V_{gsp} = V_{in} - V_{DD}$ \[V_{tp} < 0 \]

$V_{dsp} = V_{out} - V_{DD}$

![pMOS Circuit Diagram](image)
I-V Characteristics

- Make pMOS wider than nMOS such that \(\beta_n = \beta_p \)
DC Transfer Curve

- Transcribe points onto V_{in} vs. V_{out} plot

![Diagram of DC Transfer Curve]

- Points labeled A, B, C, D, E on the plot.
- Points marked with V_{DD}, V_{in}, $V_{\text{DD}}/2$, $V_{\text{DD}} + V_{\text{tp}}$, and V_{DD}.
Operating Regions

- Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Operating Regions Diagram](attachment:image.png)
Operating Regions

- Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cutoff</td>
<td>Linear</td>
</tr>
<tr>
<td>B</td>
<td>Saturation</td>
<td>Linear</td>
</tr>
<tr>
<td>C</td>
<td>Saturation</td>
<td>Saturation</td>
</tr>
<tr>
<td>D</td>
<td>Linear</td>
<td>Saturation</td>
</tr>
<tr>
<td>E</td>
<td>Linear</td>
<td>Cutoff</td>
</tr>
</tbody>
</table>
Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called *skewed* gate
- Other gates: collapse into equivalent inverter
Noise Margins

- How much noise can a gate input see before it does not recognize the input?

![Gate Diagram]

<table>
<thead>
<tr>
<th>Logical High Output Range</th>
<th>Logical Low Output Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>(V_{OL})</td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>(V_{IL})</td>
</tr>
<tr>
<td>(V_{OH} - V_{IL})</td>
<td>(V_{OL} - V_{OH})</td>
</tr>
</tbody>
</table>

- Input Characteristics
 - \(V_{IH} \): Logical High Input Range
 - \(V_{IL} \): Logical Low Input Range

- Output Characteristics
 - \(V_{OH} \): Logical High Output Range
 - \(V_{OL} \): Logical Low Output Range

- Indeterminate Region
 - \(V_{OH} \leq V_{IL} \) or \(V_{IH} \geq V_{OL} \)
Logic Levels

- To maximize noise margins, select logic levels at V_{DD}.
Logic Levels

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

\[\frac{\beta_p}{\beta_n} > 1 \]

\[V_{in} \]

\[V_{IL} \]

\[V_{IH} \]

\[V_{DD} \]

\[V_{OL} \]

\[V_{OH} \]

\[V_{DD} \]

\[V_{out} \]

Unity Gain Points
Slope = -1

\[\frac{\beta_p}{\beta_n} > 1 \]