Interconnects

- Wire Resistance
- Wire Capacitance
- Wire RC Delay
- Crosstalk
- Wire Engineering
- Repeaters
Introduction

• Chips are mostly made of wires called *interconnect*
 – In stick diagram, wires set size
 – Transistors are little things under the wires
 – Many layers of wires

• Wires are as important as transistors
 – Speed
 – Power
 – Noise

• Alternating layers run orthogonally
Wire Geometry

• Pitch = w + s
• Aspect ratio: AR = t/w
 – Old processes had AR << 1
 – Modern processes have AR ≈ 2
 • Pack in many skinny wires
Layer Stack

• AMI 0.6 μm process has 3 metal layers
• Modern processes use 6-10+ metal layers
• Example:
 Intel 180 nm process
 • M1: thin, narrow (< 3λ)
 – High density cells
 • M2-M4: thicker
 – For longer wires
 • M5-M6: thickest
 – For V_{DD}, GND, clk

<table>
<thead>
<tr>
<th>Layer</th>
<th>T (nm)</th>
<th>W (nm)</th>
<th>S (nm)</th>
<th>AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1720</td>
<td>860</td>
<td>860</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>1600</td>
<td>800</td>
<td>800</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>1080</td>
<td>540</td>
<td>540</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>320</td>
<td>320</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>700</td>
<td>320</td>
<td>320</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>480</td>
<td>250</td>
<td>250</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Substrate
Wire Resistance

\[\rho = \text{resistivity} \ (\Omega \cdot \text{m}) \]

\[R = \frac{\rho}{t \cdot w} = R_\square \frac{l}{w} \]

- \(R_\square \) = \textit{sheet resistance} \ (\Omega/\square)
 - \(\square \) is a dimensionless unit(!)
- Count number of squares
 - \(R = R_\square \ast \text{(\# of squares)} \)
Choice of Metals

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

<table>
<thead>
<tr>
<th>Metal</th>
<th>Bulk resistivity (μΩ*cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (Ag)</td>
<td>1.6</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>1.7</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>2.2</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>2.8</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>5.3</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>5.3</td>
</tr>
</tbody>
</table>
Sheet Resistance

- Typical sheet resistances in 180 nm process

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sheet Resistance (Ω/\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion (silicided)</td>
<td>3-10</td>
</tr>
<tr>
<td>Diffusion (no silicide)</td>
<td>50-200</td>
</tr>
<tr>
<td>Polysilicon (silicided)</td>
<td>3-10</td>
</tr>
<tr>
<td>Polysilicon (no silicide)</td>
<td>50-400</td>
</tr>
<tr>
<td>Metal1</td>
<td>0.08</td>
</tr>
<tr>
<td>Metal2</td>
<td>0.05</td>
</tr>
<tr>
<td>Metal3</td>
<td>0.05</td>
</tr>
<tr>
<td>Metal4</td>
<td>0.03</td>
</tr>
<tr>
<td>Metal5</td>
<td>0.02</td>
</tr>
<tr>
<td>Metal6</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Contacts Resistance

- Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery
Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below

- $C_{\text{total}} = C_{\text{top}} + C_{\text{bot}} + 2C_{\text{adj}}$
Capacitance Trends

- Parallel plate equation: \(C = \varepsilon A/d \)
 - Wires are not parallel plates, but obey trends
 - Increasing area \((W, t)\) increases capacitance
 - Increasing distance \((s, h)\) decreases capacitance

- Dielectric constant
 - \(\varepsilon = k\varepsilon_0 \)

- \(\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm} \)
- \(k = 3.9 \) for \(\text{SiO}_2 \)
- Processes are starting to use low-k dielectrics
 - \(k \approx 3 \) (or less) as dielectrics use air pockets

- Typical (M2) wires have \(\sim 0.2 \text{ fF/\mu m} \)
 - Compare to \(2 \text{ fF/\mu m} \) for gate capacitance
Diffusion & Polysilicon

• Diffusion capacitance is very high (about 2 fF/μm)
 – Comparable to gate capacitance
 – Diffusion also has high resistance
 – Avoid using diffusion *runners* for wires!

• Polysilicon has lower C but high R
 – Use for transistor gates
 – Occasionally for very short wires between gates
Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

\[\frac{R}{N} - \frac{C}{N} - \frac{R}{N} \ldots - \frac{R}{N} - \frac{C}{N} \]

\[\frac{R}{2} - \frac{C}{2} - \frac{R}{2} \]

\[\frac{R}{2} - \frac{C}{2} \]

- 3-segment \(\pi \)-model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment \(\pi \)-model for Elmore delay
Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μm wide
 - Number of squares = 5000/0.32 = 15625

- Construct a 3-segment π-model
 - $R_{\square} = 0.05 \, \Omega/\square$ \quad \Rightarrow R = 15625 \times 0.05 = 781 \, \Omega$
 - $C_{\text{permicron}} = 0.2 \, \text{fF}/\mu\text{m}$ \quad \Rightarrow C = 0.2 \, \text{fF}/\mu\text{m} \times 5000 \, \mu\text{m} = 1 \, \text{pF}$

\[
\begin{array}{c}
260 \, \Omega \\
\downarrow \\
167 \, \text{fF} \\
\downarrow \\
260 \, \Omega \\
\downarrow \\
167 \, \text{fF} \\
\downarrow \\
260 \, \Omega \\
\downarrow \\
167 \, \text{fF} \\
\downarrow \\
260 \, \Omega \\
\downarrow \\
167 \, \text{fF}
\end{array}
\]
Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - \(R = 2.5 \, \text{k}\Omega \cdot \mu\text{m} \) for gates
 - Unit inverter: 0.36 \(\mu \text{m} \) nMOS, 0.72 \(\mu \text{m} \) pMOS
 - Unit inverter has 4\(\lambda = 0.36\mu\text{m} \) wide nMOS, 8\(\lambda = 0.72\mu\text{m} \) wide pMOS
 - Unit inverter: effective resistance of \((2.5 \, \text{k}\Omega \cdot \mu\text{m})/(0.36\mu\text{m}) = 6.9 \, \text{k}\Omega \)
 - Capacitance: \((0.36\mu\text{m} + 0.72 \, \mu\text{m}) \times (2fF/\mu\text{m}) = 2fF \)
 - \(t_{pd} = 1.1 \, \text{ns} \)

\[
\begin{align*}
\text{Driver} & \quad 690 \, \Omega \\
\text{Wire} & \quad 781 \, \Omega \\
\text{Load} & \quad 500 \, fF \\
& \quad 500 \, fF \\
& \quad 4 \, fF
\end{align*}
\]
Crosstalk

• A capacitor does not like to change its voltage instantaneously.

• A wire has high capacitance to its neighbor.
 – When the neighbor switches from 1->0 or 0->1, the wire tends to switch too.
 – Called capacitive coupling or crosstalk.

• Crosstalk effects
 – Noise on non-switching wires
 – Increased delay on switching wires
Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{\text{gnd}} = C_{\text{top}} + C_{\text{bot}}$
- Effective C_{adj} depends on behavior of neighbors
 - *Miller effect*

<table>
<thead>
<tr>
<th>B</th>
<th>ΔV</th>
<th>$C_{\text{eff(A)}}$</th>
<th>MCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>V_{DD}</td>
<td>$C_{\text{gnd}} + C_{\text{adj}}$</td>
<td>1</td>
</tr>
<tr>
<td>Switching with A</td>
<td>0</td>
<td>C_{gnd}</td>
<td>0</td>
</tr>
<tr>
<td>Switching opposite A</td>
<td>$2V_{\text{DD}}$</td>
<td>$C_{\text{gnd}} + 2C_{\text{adj}}$</td>
<td>2</td>
</tr>
</tbody>
</table>
Crosstalk Noise

• Crosstalk causes noise on non-switching wires
• If victim is floating:
 – model as capacitive voltage divider

\[
\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}} \Delta V_{\text{aggressor}}
\]
Coupling Waveforms

- Simulated coupling for $C_{adj} = C_{victim}$
Noise Implications

• *So what* if we have noise?
• If the noise is less than the noise margin, nothing happens
• Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 – But glitches cause extra delay
 – Also cause extra power from false transitions
• Dynamic logic never recovers from glitches
• Memories and other sensitive circuits also can produce the wrong answer
Wire Engineering

• Goal: achieve delay, area, power goals with acceptable noise

• Degrees of freedom:
 – Width
 – Spacing
 – Layer
 – Shielding
Repeaters

- R and C are proportional to l
- RC delay is proportional to l^2
 - Unacceptably great for long wires
Repeaters

- R and C are proportional to l
- RC delay is proportional to l^2
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer
Repeater Design

• How many repeaters should we use?
• How large should each one be?
• Equivalent circuit
 – Wire length l
 • Wire Capacitance C_w*l, Resistance R_w*l
 – Inverter width W (nMOS = W, pMOS = $2W$)
 • Gate Capacitance $C’*W$, Resistance R/W
 •
Repeater Results

• Write equation for Elmore Delay
 – Differentiate with respect to W and N
 – Set equal to 0, solve

\[\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}} \]

\[\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_w C_w} \quad \text{~60-80 ps/mm} \]

\[W = \sqrt{\frac{RC_w}{R_w C'}} \]

in 180 nm process