Circuit Pitfalls

On how to avoid bad circuit design!
Outline

• Circuit Pitfalls
 – Detective puzzle
 – Given circuit and symptom, diagnose cause and recommend solution
 – All these pitfalls have caused failures in real chips
• Noise Budgets
• Reliability
Bad Circuit 1

- Circuit
 - 2:1 multiplexer

 \[\text{Principle:}\]

- Symptom
 - Mux works when selected D is 0 but not 1.
 - Or fails at low V_{DD}.

- Solution:
Bad Circuit 1

- Circuit
 - 2:1 multiplexer

- Symptom
 - Mux works when selected
 D is 0 but not 1.
 - Or fails at low V_{DD}.

Principle: Threshold drop
X never rises above $V_{DD} - V_t$
V_t is raised by the body effect
The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.

Solution:
Bad Circuit 1

• Circuit
 – 2:1 multiplexer

• Symptom
 – Mux works when selected
 D is 0 but not 1.
 – Or fails at low V_{DD}.
 – Or fails in SFSF corner.

Principle: Threshold drop
 X never rises above $V_{DD} - V_t$
 V_t is raised by the body effect
 The threshold drop is most serious as V_t becomes a
 greater fraction of V_{DD}.

Solution: Use transmission gates, not pass transistors
Bad Circuit 2

• Circuit
 – Latch

\[\begin{align*}
D & \quad \phi \\
\quad & \quad \phi
\end{align*} \]

Principle:

Solution:

• Symptom
 – Load a 0 into Q
 – Set $\phi = 0$
 – Eventually Q spontaneously flips to 1
Bad Circuit 2

- **Circuit**
 - Latch

 ![Latch Diagram]

- **Symptom**
 - Load a 0 into Q
 - Set \(\phi = 0 \)
 - Eventually Q spontaneously flips to 1

Principle: Leakage

\(X \) is a dynamic node holding value as charge on the node
Eventually subthreshold leakage may disturb charge

Solution:
Bad Circuit 2

- Circuit
 - Latch

- Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Q spontaneously flips to 1

Principle: Leakage

X is a dynamic node holding value as charge on the node
Eventually subthreshold leakage may disturb charge

Solution: Staticize node with feedback
Or periodically refresh node (requires fast clock, not practical for processes with big leakage)
Bad Circuit 3

• Circuit
 – Domino AND gate

\[\begin{array}{c}
\phi \\
0 \\
1 \\
\end{array} \quad \begin{array}{c}
X \\
\rightarrow \\
Y
\end{array} \]

Principle:

Solution:

• Symptom
 – Precharge gate (Y=0)
 – Then evaluate
 – Eventually Y spontaneously flips to 1
Bad Circuit 3

• Circuit
 – Domino AND gate

Principle: Leakage
 X is a dynamic node holding value as charge on the node
 Eventually subthreshold leakage may disturb charge

• Symptom
 – Precharge gate (Y=0)
 – Then evaluate
 – Eventually Y spontaneously flips to 1

Solution:
Bad Circuit 3

- **Circuit**
 - Domino AND gate

- **Symptom**
 - Precharge gate ($Y=0$)
 - Then evaluate
 - Eventually Y spontaneously flips to 1

Principle: Leakage

- X is a dynamic node holding value as charge on the node
- Eventually subthreshold leakage may disturb charge

Solution: Keeper
Bad Circuit 4

- Circuit
 - Pseudo-nMOS OR

Principle:

Solution:

- Symptom
 - When only one input is true, $Y = 0$.
Bad Circuit 4

• Circuit
 – Pseudo-nMOS OR

\[
\begin{array}{c}
\text{A} \\
\downarrow
\end{array} \quad \begin{array}{c}
\text{B} \\
\downarrow
\end{array} \quad \text{X} \quad \begin{array}{c}
\uparrow
\end{array} \quad \begin{array}{c}
\text{Y}
\end{array}
\]

• Symptom
 – When only one input is true, \(Y = 0 \).

Principle: Ratio Failure
nMOS and pMOS fight each other.
If the pMOS is too strong, nMOS cannot pull X low enough.
Solution:
Bad Circuit 4

- Circuit
 - Pseudo-nMOS OR

- Symptom
 - When only one input is true, $Y = 0$.

Principle: Ratio Failure

nMOS and pMOS fight each other.
If the pMOS is too strong, nMOS cannot pull X low enough.

Solution: Check that ratio is satisfied in all corners
Bad Circuit 5

- Circuit
 - Latch

Principle:

- Symptom
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.

Solutions:
Bad Circuit 5

- Circuit
 - Latch

Principle: Ratio Failure (again)
 Series resistance of D driver, wire resistance, and t_{gate} must be much less than weak feedback inverter.

Solutions:

- Symptom
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.
Bad Circuit 5

- Circuit
 - Latch

- Symptom
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.

Principle: Ratio Failure (again)
Series resistance of D driver, wire resistance, and t_{gate} must be much less than weak feedback inverter.

Solutions: Check relative strengths
Avoid unbuffered diffusion inputs where driver is unknown
Bad Circuit 6

- Circuit
 - Domino AND gate

Principle:

Solutions:

- Symptom
 - Precharge gate while
 \(A = B = 0, \text{ so } Z = 0 \)
 - Set \(\phi = 1 \)
 - \(A \) rises
 - \(Z \) is observed to sometimes rise
Bad Circuit 6

- Circuit
 - Domino AND gate

 ![Circuit Diagram]

 Principle: Charge Sharing
 If X was low, it shares charge with Y

- Symptom
 - Precharge gate while
 A = B = 0, so Z = 0
 - Set \(\phi = 1 \)
 - A rises
 - Z is observed to sometimes rise

 ![Symptom Diagram]
Bad Circuit 6

• Circuit
 – Domino AND gate

Principle: Charge Sharing
 If X was low, it shares charge with Y
Solutions: Limit charge sharing

\[V_x = V_y = \frac{C_y}{C_x + C_y} V_{DD} \]
Safe if \(C_Y \gg C_X \)
Or precharge node X too

• Symptom
 – Precharge gate while
 \(A = B = 0 \), so \(Z = 0 \)
 – Set \(\phi = 1 \)
 – A rises
 – \(Z \) is observed to sometimes rise
Bad Circuit 7

• Circuit
 – Dynamic gate + latch

• Symptom
 – Precharge gate while transmission gate latch is opaque
 – Evaluate
 – When latch becomes transparent, X falls

Principle:

Solution:
Bad Circuit 7

• Circuit
 – Dynamic gate + latch

![Circuit Diagram]

• Symptom
 – Precharge gate while transmission gate latch is opaque
 – Evaluate
 – When latch becomes transparent, X falls

Principle: Charge Sharing
 If Y was low, it shares charge with X

Solution:
Bad Circuit 7

- Circuit
 - Dynamic gate + latch

- Symptom
 - Precharge gate while transmission gate latch is opaque
 - Evaluate
 - When latch becomes transparent, X falls

Principle: Charge Sharing
If Y was low, it shares charge with X
Solution: Buffer dynamic nodes before driving transmission gate
Bad Circuit 8

• Circuit
 – Latch

Principle:

Solution:

• Symptom
 – Q changes while latch is opaque
 – Especially if D comes from a far-away driver
Bad Circuit 8

• Circuit
 - Latch

Principle: Diffusion Input Noise Sensitivity
 If $D < -V_t$, transmission gate turns on
 Most likely because of power supply noise or coupling on D

• Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver

Solution:
Bad Circuit 8

- Circuit
 - Latch

\[
\begin{array}{c}
D \\
\text{weak} \\
V_{DD}
\end{array}
\quad \begin{array}{c}
GND \\
V_{DD}
\end{array}
\quad Q
\]

- Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver

Principle: Diffusion Input Noise Sensitivity
 - If D < -V_t, transmission gate turns on
 - Most likely because of power supply noise or coupling on D

Solution: Buffer D locally

\[
\begin{array}{c}
D \\
\text{weak} \\
V_{DD}
\end{array}
\quad 0 \\
\begin{array}{c}
V_{DD} \\
\text{weak}
\end{array}
\quad Q
\]
Bad Circuit 9

- Circuit
 - Anything

- Symptom
 - Some gates are slower than expected

Principle:
Bad Circuit 9

- **Circuit**
 - Anything

- **Symptom**
 - Some gates are slower than expected

Principle: Hot Spots and Power Supply Noise
Noise

• Sources
 – Power supply noise / ground bounce
 – Capacitive coupling
 – Charge sharing
 – Leakage
 – Noise feedthrough

• Consequences
 – Increased delay (for noise to settle out)
 – Or incorrect computations
Reliability

- Hard Errors
- Soft Errors

<table>
<thead>
<tr>
<th>Time</th>
<th>Failure Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant Mortality</td>
<td></td>
</tr>
<tr>
<td>Useful Operating Life</td>
<td></td>
</tr>
<tr>
<td>Wear Out</td>
<td></td>
</tr>
</tbody>
</table>
Electromigration

- “Electron wind” causes movement of metal atoms along wires
- Excessive electromigration leads to open circuits
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature
 - Black’s Equation:
 $$MTTF \propto \frac{e^{\frac{E_a}{kT}}}{J_{dc}^n}$$
 - Typical limits: $J_{dc} < 1 – 2$ mA / μm2
Self-Heating

• Current through wire resistance generates heat
 – Oxide surrounding wires is a thermal insulator
 – Heat tends to build up in wires
 – Hotter wires are more resistive, slower

• Self-heating limits AC current densities for reliability
 \[I_{\text{rms}} = \sqrt{\frac{\int_{0}^{T} I(t)^2 \, dt}{T}} \]
 – Typical limits: \(J_{\text{rms}} < 15 \text{ mA/μm}^2 \)
Hot Carriers

• Electric fields across channel impart high energies to some carriers
 – These “hot” carriers may be blasted into the gate oxide where they become trapped
 – Accumulation of charge in oxide causes shift in V_t over time
 – Eventually V_t shifts too far for devices to operate correctly

• Choose V_{DD} to achieve reasonable product lifetime
 – Worst problems for inverters and NORs with slow input rise time and long propagation delays
Latchup

- Latchup: positive feedback leading to $V_{DD} - GND$ short
 - Major problem for 1970’s CMOS processes before it was well understood

- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps
Guard Rings

- Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- Surround sensitive region with guard ring to collect injected charge
Overvoltage

• High voltages can damage transistors
 – Electrostatic discharge
 – Oxide arcing
 – Punchthrough
 – Time-dependent dielectric breakdown (TDDB)
 • Accumulated wear from tunneling currents
• Requires low V_{DD} for thin oxides and short channels
• Use ESD protection structures where chip meets real world
Summary

• Static CMOS gates are very robust
 – Will settle to correct value if you wait long enough
• Other circuits suffer from a variety of pitfalls
 – Tradeoff between performance & robustness
• Very important to check circuits for pitfalls
 – For large chips, you need an automatic checker.
 – Design rules aren’t worth the paper they are printed on unless you back them up with a tool.
Soft Errors

• In 1970’s, DRAMs were observed to occasionally flip bits for no apparent reason
 – Ultimately linked to alpha particles and cosmic rays
• Collisions with particles create electron-hole pairs in substrate
 – These carriers are collected on dynamic nodes, disturbing the voltage
• Minimize soft errors by having plenty of charge on dynamic nodes
• Tolerate errors through ECC, redundancy
• Soft errors are now a problem for logic too!