Performance Characterization

• Delay analysis
• Transistor sizing
• Logical effort
• Power analysis
Delay Definitions

- t_{pdr}: *rising propagation delay*
 - From input to rising output crossing $V_{DD}/2$
- t_{pdf}: *falling propagation delay*
 - From input to falling output crossing $V_{DD}/2$
- t_{pd}: *average propagation delay*
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- t_r: *rise time*
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: *fall time*
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}
Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

\[
\begin{align*}
V_{in} & \quad t_{pd} = 66ps \\
V_{out} & \quad t_{pdf} = 83ps
\end{align*}
\]
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask “What if?”
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - \(C = \) total capacitance on output node
 - Use *effective resistance* \(R \)
 - So that \(t_{pd} = RC \)
- Characterize transistors by finding their effective \(R \)
 - Depends on average current as gate switches
RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width
Example: 3-input NAND

- Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
Example: 3-input NAND

- Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
Example: 3-input NAND

• Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
3-input NAND Caps

- Annotate the 3-input NAND gate with gate and diffusion capacitance.
3-input NAND Caps

- Annotate the 3-input NAND gate with gate and diffusion capacitance.

![3-input NAND Gate Diagram]
3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.
Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

\[t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i \]

\[= R_1 C_1 + (R_1 + R_2) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N \right) C_N \]
Example: 2-input NAND

- Estimate worst-case rising and falling delay of 2-input NAND driving h identical gates.
Example: 2-input NAND

- Estimate rising and falling propagation delays of a 2-input NAND driving \(h \) identical gates.
Example: 2-input NAND

- Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

$$t_{pdr} = (6 + 4h)C$$

```
+----+ 2
|    |
|    |
|    |
|    +----+
|          |
|          |
|          |
|          |
+----+ 2  |
|    | 6C   |
|    | x    |
|    | 2C   |
+----+ 2  |
|    | 4hC  |
|    |      |
|    +-----+ h copies
|          |
|          |
|          |
|          |
+-----------
```

R

$(6 + 4h)C$
Example: 2-input NAND

- Estimate **rising** and falling propagation delays of a 2-input NAND driving h identical gates.

$$t_{pdr} = (6 + 4h) \cdot RC$$
Example: 2-input NAND

- Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.
Example: 2-input NAND

- Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

\[
t_{pdf} = \frac{(6+4h)C}{2R/2} = \frac{4hC}{R/2} x \frac{Y}{Y}
\]
Example: 2-input NAND

- Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

\[t_{pdf} = (2C)\left(\frac{R}{2}\right) + \left[(6+4h)C \right]\left(\frac{R}{2} + \frac{R}{2}\right) = (7+4h)RC \]
Delay Components

- Delay has two parts
 - *Parasitic delay*
 - 6 or 7 RC
 - Independent of load
 - *Effort delay*
 - 4h RC
 - Proportional to load capacitance
Contamination Delay

• Best-case (contamination) delay can be substantially less than propagation delay.

• Ex: If both inputs fall simultaneously

\[t_{cdr} = (3 + 2h) RC \]
Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area.
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too.

![Diagram of diffusion capacitance](image)
Layout Comparison

- Which layout is better?

![Diagram of two layouts comparing A and B connections to V_{DD} and GND]
Resizing the Inverter

Minimum-sized transistor:
\[W = 3\lambda, \; L = 2\lambda \]

To get equal rise and fall times,
\[\beta_n = \beta_p \Rightarrow W_p = 3W_n, \]
assuming that electron mobility is three times that of holes.
\[W_p = 9\lambda \]

Sometimes the function being implemented makes resizing unnecessary!
Analyzing the NAND Gate

\[\beta_{n,\text{eff}} = \frac{1}{\beta_{n1}} + \frac{1}{\beta_{n2}} + \frac{1}{\beta_{n3}} \]

Resistances are in series (conductances are in parallel)

If \(\beta_{n1} = \beta_{n2} = \beta_{n3} = \beta_n \) then \(\beta_{n,\text{eff}} = \beta_n/3 \)

- Pull-down circuit has three times resistance, one-third times the conductance

Why not consider resistances in parallel?

For pull-up, only one transistor has to be on, \(\beta_{p,\text{eff}} = \min\{\beta_{p1}, \beta_{p2}, \beta_{p3}\} \)

If \(\beta_{p1} = \beta_{p2} = \beta_{p3} = \beta_p = \beta_n/3 \) then \(\beta_{n,\text{eff}} = \beta_p \quad \Rightarrow \text{no resizing is necessary} \)
Analyzing the NOR Gate

\[\beta_{p,\text{eff}} = \frac{1}{\frac{1}{\beta_{p1}} + \frac{1}{\beta_{p2}} + \frac{1}{\beta_{p3}}} \]

Resistances are in series (conductances are in parallel)

- Pull-up circuit has three times resistance, one-third times the conductance

For pull-down, only one transistor has to be on, \(\beta_{n,\text{eff}} = \min\{\beta_{n1}, \beta_{n2}, \beta_{n3}\} \)

If \(\beta_{n1} = \beta_{n2} = \beta_{n3} = \beta_n = 3\beta_p \) then \(\beta_{n,\text{eff}} = 9\beta_{p,\text{eff}} \Rightarrow \text{considerable resizing is necessary} \)

\[W_p = 9W_n ! \]
Effect of Series Transistors

Diagram showing the effect of series transistors with labeled dimensions L, W, and poly for the diffusion areas.
Effect of Series Transistors

Transistor resizing example

Resize the pull-up transistors to make pull-up times equal

After resizing:
- a: $2\beta_p$
- b: $2\beta_p$
- c: β_p
Transistor Placement (Series Stack)

How to order transistors in a series stack?

Body effect: $\delta V_t \propto \sqrt{V_{sb}}$
- At time $t = 0$, $a=b=c=0$, $f=1$, capacitances are charged.
- Ideally $V_{ta} = V_{tb} = V_{tc} \approx 0.8V$
- However, $V_{ta} > V_{tb} > V_{tc}$ because of body effect.

- If a, b, c become 1 at the same time, which transistor will switch on first?
 - t_c will switch on first (V_{sb} for t_c is zero), C_c will discharge, pulling V_{sb} for t_b to zero.

- If signals arrive at different times, how should the transistors be ordered?
 - Design strategy: place latest arriving signal nearest to output-early signals will discharge internal nodes.
Transistor Placement

Primary inputs
(change simultaneously)
Some Design Guidelines

• Use NAND gates (instead of NOR) wherever possible
• Placed inverters (buffers) at high fanout nodes to improve drive capability
• Avoid use of NOR completely in high-speed circuits: $A_1 + A_2 + \ldots + A_n = A_1.A_2\ldots.A_n$
Some Design Guidelines

- Use limited fan-in (<10): high fan-in ⇒ long series stacks
- Use minimum-sized gates on high fan-out nodes: minimize load presented to driving gate
Logical Effort

• Chip designers face a bewildering array of choices
 – What is the best circuit topology for a function?
 – How many stages of logic give least delay?
 – How wide should the transistors be?

• Logical effort is a method to make these decisions
 – Uses a simple model of delay
 – Allows back-of-the-envelope calculations
 – Helps make rapid comparisons between alternatives
 – Emphasizes remarkable symmetries
Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors

- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?
Delay in a Logic Gate

- Express delays in process-independent unit

\[d = \frac{d_{abs}}{\tau} \]

\[\tau = 3RC \]

≈ 12 ps in 180 nm process
40 ps in 0.6 μm process
Delay in a Logic Gate

• Express delays in process-independent unit

\[d = \frac{d_{\text{abs}}}{\tau} \]

• Delay has two components

\[d = f + p \]
Delay in a Logic Gate

• Express delays in process-independent unit
 \[d = \frac{d_{abs}}{\tau} \]

• Delay has two components
 \[d = f + p \]

• *Effort delay* \(f = gh \) (a.k.a. *stage effort*)
 – Again has two components
Delay in a Logic Gate

- Express delays in process-independent unit
 \[d = \frac{d_{abs}}{\tau} \]
- Delay has two components
 \[d = f + p \]
- Effort delay \(f = gh \) (a.k.a. stage effort)
 - Again has two components
- \(g \): logical effort
 - Measures relative ability of gate to deliver current
 - \(g \equiv 1 \) for inverter
Delay in a Logic Gate

- Express delays in process-independent unit
 \[d = \frac{d_{abs}}{\tau} \]
 - Delay has two components
 \[d = f + p \]
- Effort delay \(f = gh \) (a.k.a. stage effort)
 - Again has two components
- \(h \): electrical effort = \(\frac{C_{out}}{C_{in}} \)
 - Ratio of output to input capacitance
 - Sometimes called fanout
Delay in a Logic Gate

• Express delays in process-independent unit
 \[d = \frac{d_{\text{abs}}}{\tau} \]

• Delay has two components
 \[d = f + p \]

• Parasitic delay \(p \)
 – Represents delay of gate driving no load
 – Set by internal parasitic capacitance
\[d = f + p \]
\[= gh + p \]

Electrical Effort:
\[h = \frac{C_{\text{out}}}{C_{\text{in}}} \]

Normalized Delay:
\[g = \quad p = \quad d = \]

Delay Plots

2-input NAND

Inverter

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]

NormalizedDelay:d
$$d = f + p$$
$$= gh + p$$

- What about NOR2?

\[g = 4/3 \]
\[p = 2 \]
\[d = (4/3)h + 2 \]

\[h = C_{out} / C_{in} \]
Computing Logical Effort

- **DEF:** *Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.*
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

\[C_{in} = 3 \quad g = \frac{3}{3} \]
\[C_{in} = 4 \quad g = \frac{4}{3} \]
\[C_{in} = 5 \quad g = \frac{5}{3} \]
Catalog of Gates

- Logical effort of common gates

<table>
<thead>
<tr>
<th>Gate type</th>
<th>Number of inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inverter</td>
<td>1</td>
</tr>
<tr>
<td>NAND</td>
<td>4/3</td>
</tr>
<tr>
<td>NOR</td>
<td>5/3</td>
</tr>
<tr>
<td>Tristate / mux</td>
<td>2</td>
</tr>
</tbody>
</table>
Catalog of Gates

• Parasitic delay of common gates
 – In multiples of p_{inv} (≈ 1)

<table>
<thead>
<tr>
<th>Gate type</th>
<th>Number of inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inverter</td>
<td>1</td>
</tr>
<tr>
<td>NAND</td>
<td>2</td>
</tr>
<tr>
<td>NOR</td>
<td>2</td>
</tr>
<tr>
<td>Tristate / mux</td>
<td>2</td>
</tr>
<tr>
<td>XOR, XNOR</td>
<td>4</td>
</tr>
</tbody>
</table>

Parasitic delay of common gates in multiples of p_{inv} (≈ 1)
Example: Ring Oscillator

- Estimate the frequency of an N-stage ring oscillator

Logical Effort: \(g = \)

Electrical Effort: \(h = \)

Parasitic Delay: \(p = \)

Stage Delay: \(d = \)

Frequency: \(f_{\text{osc}} = \)
Example: Ring Oscillator

- Estimate the frequency of an N-stage ring oscillator

Logical Effort: \(g = 1 \)
Electrical Effort: \(h = 1 \)
Parasitic Delay: \(p = 1 \)
Stage Delay: \(d = 2 \)
Frequency: \(f_{\text{osc}} = \frac{1}{(2Nd)} = \frac{1}{4N} \)

31 stage ring oscillator in 0.6 μm process has frequency of ~ 200 MHz
Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: \(g = \)
Electrical Effort: \(h = \)
Parasitic Delay: \(p = \)
Stage Delay: \(d = \)
Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: $g = 1$
Electrical Effort: $h = 4$
Parasitic Delay: $p = 1$
Stage Delay: $d = 5$

The FO4 delay is about
- 200 ps in 0.6 μm process
- 60 ps in a 180 nm process
- $f/3$ ns in an f μm process
Multistage Logic Networks

- Logical effort generalizes to multistage networks
- *Path Logical Effort* \[G = \prod g_i \]
- *Path Electrical Effort* \[H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}} \]
- *Path Effort* \[F = \prod f_i = \prod g_i h_i \]
Multistage Logic Networks

- Logical effort generalizes to multistage networks
- **Path Logical Effort** $G = \prod g_i$
- **Path Electrical Effort** $H = \frac{C_{out-path}}{C_{in-path}}$
- **Path Effort** $F = \prod f_i = \prod g_i h_i$

- Can we write $F = GH$?
Paths that Branch

• No! Consider paths that branch:

\[G = \]
\[H = \]
\[GH = \]
\[h_1 = \]
\[h_2 = \]
\[F = GH? \]
Paths that Branch

- No! Consider paths that branch:

 \[G = 1 \]
 \[H = \frac{90}{5} = 18 \]
 \[GH = 18 \]
 \[h_1 = \frac{(15 + 15)}{5} = 6 \]
 \[h_2 = \frac{90}{15} = 6 \]
 \[F = g_1 g_2 h_1 h_2 = 36 = 2GH \]
Branching Effort

• Introduce *branching effort*
 – Accounts for branching between stages in path

\[b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}} \]

\[B = \prod b_i \]

• Now we compute the path effort
 – \(F = GBH \)

*Note: \(\prod h_i = BH \)
Multistage Delays

- Path Effort Delay
 \[D_F = \sum f_i \]

- Path Parasitic Delay
 \[P = \sum p_i \]

- Path Delay
 \[D = \sum d_i = D_F + P \]
Designing Fast Circuits

\[D = \sum d_i = D_F + P \]

- Delay is smallest when each stage bears same effort

\[\hat{f} = g_i h_i = F^{\frac{1}{N}} \]

- Thus minimum delay of N stage path is

\[D = NF^{\frac{1}{N}} + P \]

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn’t require calculating gate sizes
Gate Sizes

- How wide should the gates be for least delay?

\[\hat{f} = gh = g \frac{C_{out}}{C_{in}} \]

\[\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}} \]

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.
Example: 3-stage path

- Select gate sizes x and y for least delay from A to B
Example: 3-stage path

Logical Effort \(G = \)
Electrical Effort \(H = \)
Branching Effort \(B = \)
Path Effort \(F = \)
Best Stage Effort \(\hat{f} = \)
Parasitic Delay \(P = \)
Delay \(D = \)
Example: 3-stage path

Logical Effort \(G = (4/3) \times (5/3) \times (5/3) = 100/27 \)
Electrical Effort \(H = 45/8 \)
Branching Effort \(B = 3 \times 2 = 6 \)
Path Effort \(F = GBH = 125 \)
Best Stage Effort \(\hat{f} = \sqrt[3]{F} = 5 \)
Parasitic Delay \(P = 2 + 3 + 2 = 7 \)
Delay \(D = 3 \times 5 + 7 = 22 = 4.4 \text{ FO4} \)
Example: 3-stage path

- Work backward for sizes

\[y = \]
\[x = \]

A

\[8 \]

\[x \]

\[x \]

\[x \]

\[y \]

\[B \]

\[45 \]

\[45 \]
Example: 3-stage path

- Work backward for sizes

\[y = 45 \times \frac{5}{3} \div 5 = 15 \]
\[x = (15 \times 2) \times \frac{5}{3} \div 5 = 10 \]
Best Number of Stages

• How many stages should a path use?
 – Minimizing number of stages is not always fastest
• Example: drive 64-bit datapath with unit inverter

D =
Best Number of Stages

• How many stages should a path use?
 – Minimizing number of stages is not always fastest

• Example: drive 64-bit datapath with unit inverter

\[D = NF^{1/N} + P \]
\[= N(64)^{1/N} + N \]
Derivation

• Consider adding inverters to end of path
 – How many give least delay?

\[D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv} \]

\[\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0 \]

• Define best stage effort \(\rho = F^{\frac{1}{N}} \)

\[p_{inv} + \rho (1 - \ln \rho) = 0 \]
Best Stage Effort

\[p_{\text{inv}} + \rho \left(1 - \ln \rho \right) = 0 \]

• has no closed-form solution

• Neglecting parasitics \((p_{\text{inv}} = 0)\), we find \(\rho = 2.718\) (e)

• For \(p_{\text{inv}} = 1\), solve numerically for \(\rho = 3.59\)
Review of Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Stage</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of stages</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>logical effort</td>
<td>g</td>
<td>$G = \prod g_i$</td>
</tr>
<tr>
<td>electrical effort</td>
<td>$h = \frac{C_{out}}{C_{in}}$</td>
<td>$H = \frac{C_{out\text{-path}}}{C_{in\text{-path}}}$</td>
</tr>
<tr>
<td>branching effort</td>
<td>$b = \frac{C_{on\text{-path}} + C_{off\text{-path}}}{C_{on\text{-path}}}$</td>
<td>$B = \prod b_i$</td>
</tr>
<tr>
<td>effort</td>
<td>$f = gh$</td>
<td>$F = GBH$</td>
</tr>
<tr>
<td>effort delay</td>
<td>f</td>
<td>$D_F = \sum f_i$</td>
</tr>
<tr>
<td>parasitic delay</td>
<td>p</td>
<td>$P = \sum p_i$</td>
</tr>
<tr>
<td>delay</td>
<td>$d = f + p$</td>
<td>$D = \sum d_i = D_F + P$</td>
</tr>
</tbody>
</table>
Method of Logical Effort

1) Compute path effort
 \[F = GBH \]
2) Estimate best number of stages
 \[N = \log_4 F \]
3) Sketch path with N stages
4) Estimate least delay
 \[D = NF^{\frac{1}{N}} + P \]
5) Determine best stage effort
 \[\hat{f} = F^{\frac{1}{N}} \]
6) Find gate sizes
 \[C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}} \]
Limits of Logical Effort

• Chicken and egg problem
 – Need path to compute G
 – But don’t know number of stages without G

• Simplistic delay model
 – Neglects input rise time effects

• Interconnect
 – Iteration required in designs with wire

• Maximum speed only
 – Not minimum area/power for constrained delay
Summary

• Logical effort is useful for thinking of delay in circuits
 – Numeric logical effort characterizes gates
 – NANDs are faster than NORs in CMOS
 – Paths are fastest when effort delays are ~4
 – Path delay is weakly sensitive to stages, sizes
 – But using fewer stages doesn’t mean faster paths
 – Delay of path is about $\log_4 F$ FO4 inverter delays
 – Inverters and NAND2 best for driving large caps

• Provides language for discussing fast circuits
 – But requires practice to master
Power and Energy

- Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

 \[P(t) = i_{DD}(t)V_{DD} \]

- Instantaneous Power:

 \[E = \int_0^T P(t)dt = \int_0^T i_{DD}(t)V_{DD}dt \]

- Energy:

 \[P_{avg} = \frac{E}{T} = \frac{1}{T} \int_0^T i_{DD}(t)V_{DD}dt \]

- Average Power:
Dynamic Power

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
- On rising output, charge $Q = CV_{DD}$ is required.
- On falling output, charge is dumped to GND.
- This repeats T_{fsw} times over an interval of T.
Dynamic Power Cont.

\[P_{\text{dynamic}} = \]

\[i_{DD}(t) \]

\[f_{SW} \]

\[VDD \]

\[C \]
Dynamic Power Cont.

\[
P_{\text{dynamic}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt
\]

\[
= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt
\]

\[
= \frac{V_{DD}}{T} [T f_{\text{sw}} C V_{DD}]
\]

\[
= CV_{DD}^2 f_{\text{sw}}
\]
Activity Factor

• Suppose the system clock frequency = f
• Let $f_{sw} = \alpha f$, where $\alpha =$ activity factor
 – If the signal is a clock, $\alpha = 1$
 – If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 – Dynamic gates:
 • Switch either 0 or 2 times per cycle, $\alpha = \frac{1}{2}$
 – Static gates:
 • Depends on design, but typically $\alpha = 0.1$

• Dynamic power: $P_{\text{dynamic}} = \alpha CV_{DD}^2 f$
Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once.
- Leads to a blip of “short circuit” current.
- < 10% of dynamic power if rise/fall times are comparable for input and output.
Example

• 200 Mtransistor chip
 – 20M logic transistors
 • Average width: 12 λ
 – 180M memory transistors
 • Average width: 4 λ
 – 1.2 V 100 nm process
 – $C_g = 2$ fF/μm
Dynamic Example

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks!)

- Estimate dynamic power consumption per MHz. Neglect wire capacitance and short-circuit current.
Dynamic Example

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks!)
- Estimate dynamic power consumption per MHz. Neglect wire capacitance.

\[
C_{\text{logic}} = (20 \times 10^6)(12\lambda)(0.05\mu m / \lambda)(2\, fF / \mu m) = 24nF
\]
\[
C_{\text{mem}} = (180 \times 10^6)(4\lambda)(0.05\mu m / \lambda)(2\, fF / \mu m) = 72nF
\]
\[
P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.05C_{\text{mem}} \right](1.2)^2 f = 8.6\, \text{mW/MHz}
\]
Static Power

- Static power is consumed even when chip is quiescent.
 - Ratioed circuits burn power in fight between ON transistors
 - Leakage draws power from nominally OFF devices

\[
I_{ds} = I_{ds0} e^{nV_{T}} \left[1 - e^{-\frac{V_{ds}}{V_{T}}} \right]
\]

\[
V_{t} = V_{t0} - \eta V_{ds} + \gamma \left(\sqrt{\phi_{s}} + V_{sb} - \sqrt{\phi_{s}} \right)
\]
Ratio Example

- The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline pullups
 - On average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM
 - $\beta = 75 \, \mu A/V^2$
 - $V_{tp} = -0.4V$
Ratio Example

• The chip contains a 32 word x 48 bit ROM
 – Uses pseudo-nMOS decoder and bitline pullups
 – On average, one wordline and 24 bitlines are high

• Find static power drawn by the ROM
 – $\beta = 75 \, \mu A/V^2$
 – $V_{tp} = -0.4V$

• Solution:
 \[I_{\text{pull-up}} = \beta \frac{\left(V_{DD} - |V_{tp}| \right)^2}{2} = 24\mu A \]
 \[P_{\text{pull-up}} = V_{DD} I_{\text{pull-up}} = 29\mu W \]
 \[P_{\text{static}} = (31 + 24) P_{\text{pull-up}} = 1.6 \text{ mW} \]
Leakage Example

• The process has two threshold voltages and two oxide thicknesses.

• Subthreshold leakage:
 – 20 nA/μm for low V_t
 – 0.02 nA/μm for high V_t

• Gate leakage:
 – 3 nA/μm for thin oxide
 – 0.002 nA/μm for thick oxide

• Memories use low-leakage transistors everywhere

• Gates use low-leakage transistors on 80% of logic
Leakage Example Cont.

- Estimate static power:
Leakage Example Cont.

- Estimate static power:
 - High leakage: \((20 \times 10^6)(0.2)(12\lambda)(0.05\,\mu m/\lambda) = 2.4 \times 10^6\,\mu m\)
 - Low leakage: \((20 \times 10^6)(0.8)(12\lambda)(0.05\,\mu m/\lambda) + (180 \times 10^6)(4\lambda)(0.05\,\mu m/\lambda) = 45.6 \times 10^6\,\mu m\)

\[
I_{\text{static}} = (2.4 \times 10^6\,\mu m)\left[\frac{20nA}{\mu m}/2 + \frac{3nA}{\mu m}\right] + (45.6 \times 10^6\,\mu m)\left[\frac{0.02nA}{\mu m}/2 + \frac{0.002nA}{\mu m}\right]
\]

\[= 32mA\]

\[P_{\text{static}} = I_{\text{static}}V_{DD} = 38mW\]
Leakage Example Cont.

• Estimate static power: \((20 \times 10^6)(0.2)(12\lambda)(0.05 \mu m/\lambda) = 2.4 \times 10^6 \mu m \)
 - High leakage: \((20 \times 10^6)(0.8)(12\lambda)(0.05 \mu m/\lambda) \)
 - Low leakage: \((180 \times 10^6)(4\lambda)(0.05 \mu m/\lambda) = 45.6 \times 10^6 \mu m \)

\[
I_{static} = (2.4 \times 10^6 \mu m)\left[\frac{(20nA/\mu m)}{2} + \frac{(3nA/\mu m)}{2}\right] + \\
(45.6 \times 10^6 \mu m)\left[\frac{(0.02nA/\mu m)}{2} + \frac{(0.002nA/\mu m)}{2}\right]
\]
\[
= 32 mA \\
P_{static} = I_{static}V_{DD} = 38 mW
\]

• If no low leakage devices, \(P_{static} = 749 \) mW (!)
Low Power Design

• Reduce dynamic power
 – \(\alpha \):
 – \(C \):
 – \(V_{\text{DD}} \):
 – \(f \):

• Reduce static power
Low Power Design

• Reduce dynamic power
 – \(\alpha \): clock gating, sleep mode
 – C:
 – \(V_{DD} \):
 – f:

• Reduce static power
Low Power Design

• Reduce dynamic power
 – α: clock gating, sleep mode
 – C: small transistors (esp. on clock), short wires
 – V_{DD}:
 – f:

• Reduce static power
Low Power Design

• Reduce dynamic power
 – α: clock gating, sleep mode
 – C: small transistors (esp. on clock), short wires
 – V_{DD}: lowest suitable voltage
 – f:

• Reduce static power
Low Power Design

• Reduce dynamic power
 – α: clock gating, sleep mode
 – C: small transistors (esp. on clock), short wires
 – V_{DD}: lowest suitable voltage
 – f: lowest suitable frequency

• Reduce static power
Low Power Design

- Reduce dynamic power
 - \(\alpha \): clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - \(V_{DD} \): lowest suitable voltage
 - f: lowest suitable frequency

- Reduce static power
 - Selectively use ratioed circuits
 - Selectively use low \(V_t \) devices
 - Leakage reduction:
 - stacked devices, body bias, low temperature