Basal Metabolic Rate Calculator

ECE261 Full–Custom VLSI Design Project
Fall 2008

Brandon Noia,
Daniel Klein,
Arpan Roy
and Peng Li

11/07/2008
Basic Predictive Equation for BMR Calculator

For male subject:
BMR = (-790 + 3 x age + 9 x Heart Rate + 3 x Weight)
calories/hour

For female subject:
BMR = (-290 + age + 6 x Heart Rate - 2 x Weight)
calories/hour

Verified from:
Implementation

- To generate the whole circuit, we talk about the individual sub-circuits in the form of:
- 1) The multiplier – To create a 16 bit multiplier we use two 8-bit multipliers with carry propagation from the LSB to the MSB. The multiplier is a hierarchical structure composed of full adders arranged in stages to perform the cascaded multiplication operation.
- 2) We also use a 16 bit adder subtractor circuit consisting of 16 full adders.
Schematics
General Information

The basic devices used in designing the various complex devices in our circuit include 2–input AND gate, 2:1 Multiplexer, 2–input OR gate, inverters and transmission gates.

The p–D latch and n–D latch units are designed so that they can together be used to work as the Master Slave D Flip–flop.
Master and slave devices

The Master D Latch

The Slave D Latch
D Flip-flop
AND Flip-flop and NAND Flip-flops

AND Flip-flop

NAND Flip-flop
OR Flip-flop

They have two inputs A & B with two clocks – CLK and negation of CLK. The output Q is the OR of A & B. O & NQ are the outputs. The OR of A & B gets stored in the flip-flop.
The 8-input AND gate has two 8 bit inputs and an 8 bit output and two clock inputs. It is essentially composed of 8 AND flip-flops.
We have implemented an 8-bit multiplier for multiplying each pair of each decimal digits. The output is the 16-bit product. As shown in the symbol it has two 8-bit inputs for the multiplier and the multiplicand and a 16-bit output denoting the product. It has two clock inputs too.
View of one of the rows of the multiplier

View of the top row of flip-flops followed by half adders to perform the first step of multiplication.
Digital Simulation for the multiplier using ModelSim
Adders

1) Half Adder Flip flop

Half Adder Flip–flop Schematic

Half Adder Flip–flop symbol
Adders (continued)

Full adder flip–clop schematic

Full Adder Flip–flop symbol
Schematic for the adder/subtractor

Symbol for the adder/subtractor
Schematic for the whole circuit

Basal Metabolic Rate Generator

At the end of the day we have a device count of 16,236 transistors.
Power Estimate and Area of the circuit

- Dynamic Power Estimate $= \alpha \times C \times V^2 \times f$
 - $\alpha = 0.1$ for CMOS static logic
 - $C_{\text{logic}} = 16236 \times 12 \times \lambda \times 0.4 \, \text{um}/\lambda \times 2 \, \text{fF/um} = 155 \, \text{pF}$
 - $P_{\text{dynamic}} = 0.1 \times 155\,\text{pF} \times 5\,V^2 \times f \approx 0.4 \, \text{mW/MHz}$
 - Refreshing rate is 1Hz
 - Overall power $0.4\,\text{nW/second}$

- Each transistor $20 \times 10 \times \lambda (\lambda$ is 0.4um in 0.8um technology)
- Number of transistors $= 16,236$
- Total area $16236\times 20 \times 10 \times \lambda \times 120\% \approx 0.6 \, \text{mm}^2$
Thank you for your patience!