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Abstract—Most lightning location networks are based on real-
time analytical solutions of certain simplified models, while the
reality is much more complicated. In this paper, we introduce a
graphics processing unit (GPU)-based parallel computing algo-
rithm that can extensively benefit lightning geolocation networks.
For a network running this GPU-based algorithm, one can build
up a geolocation database based on numerical solutions of certain
complete models in advance, and lightning geolocations can then
be easily determined with a grid-searching technique in real time.
One such grid-searching technique, is the grid traverse algorithm
(GTA) for the traditional time of arrival technique. By running
GPU-based GTA in a six-station two-dimensional (2-D) and a
five-station 3-D networks, we show that extremely high network
performance can be achieved, with a processing speed of about
2700 times faster than CPU-based GTA. The location accuracy of
GPU-GTA is examined with Monte Carlo simulations, showing
that GPU-GTA can locate a lightning source in real time with high
accuracy. We also find that when the grid step is comparable with
the inherent time uncertainty of a network, the location accuracy
cannot be improved further with a finer grid step.

Index Terms—Graphics processing unit (GPU)-based computing
algorithm, lightning electromagnetic pulse, lightning source loca-
tion, time of arrival (TOA) technique.

I. INTRODUCTION

L IGHTNING locations from ground-based lightning loca-
tion networks provide fundamental information for scien-

tific researches as well as the society of meteorology. Either in
a long-baseline two-dimensional (2-D) lightning location net-
work [1]–[16] or in a 3-D lightning mapping array (LMA) [17]–
[28], the geolocation algorithm is always a critical technique
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to operate the network. Generally, there are three basic light-
ning geolocation techniques or their combinations that were de-
ployed in existing networks. They are the time of arrival (TOA)
technique [29], the magnetic direction finder (MDF) technique
[30], and the interferometric direction-finding technique, as well
as their combination [31]. In a long-baseline lightning loca-
tion network operating essentially in extremely low-frequency
(ELF)/very low-frequency (VLF) bands, the time of group
arrival (TOGA) technique is preferred [5], [32]. The inter-
ferometric direction-finding technique is widely used in 2-D
short-baseline VHF interferometry systems [33]–[43]. The TOA
technique is the basic method for most of the 3-D LMAs operat-
ing either in VHF or LF bands [17]–[25], whereas the interfero-
metric direction-finding technique is also adopted in many 3-D
LMAs [26]–[28]. The TOA technique finds the source location
by matching the signal arrival time differences for each pair of
sensors. For every two sensors (forming a baseline), the solution
satisfying the TOAs to these two sensors will form a parabolic
curve. By adding another proper baseline (another sensor), the
source location that matches the arrival time differences of all
baselines is the intersection point of the two parabolic curves. If
the baselines are much shorter than the distances to the lightning
source, finding the intersection point of the two parabolic curves
becomes finding the direction of the line coinciding the two
parabolic curves, which is the interferometric direction-finding
technique. The TOGA technique estimates the lightning source
distance by measuring the group delays of frequencies of light-
ning sferics above the cut-off frequency of the earth-ionosphere
waveguide (EIWG). The MDF technique identifies the source
location by deploying the intersection of at least two azimuthal
lines, each of which can be retrieved by orthogonal magnetic
field measurements.

The lightning location based on the TOA technique can be
solved with Chan’s algorithm without iteration if the earth
curvature is ignorable. When the earth curvature has to be con-
sidered, it turns to a nonlinear optimization problem. The con-
ventional method to tackle this kind of nonlinear problem is to
use the gradient search technique (e.g. Levenberg–Marquart and
Newton–Raphson methods) [9], [29], whose initial value of the
search is often estimated from Chan’s algorithm with no consid-
eration of the earth curvature. Besides, there are also some TOA
networks that adopt the CPU-based numerical grid traverse al-
gorithm (GTA). Differing from the iteration algorithm, the GTA
builds a grid database first and then finds the grid point that
matches the time differences [17], [44]. Although computing
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burdensome, the GTA has some advantages. It is much simpler
than the iteration method, which does not need an initial value
and is inherently accurate. Specifically, for radio geolocation
applications, delays of radio wave propagation due to the earth
topography can be considered in GTA to improve the geoloca-
tion accuracy. The earth topography has significant influences
on the propagation of lightning electromagnetic waves, inducing
the time uncertainty of TOA. In some networks, very sophisti-
cated approaches for corrections of the sensor’s site errors and
the lightning field propagation time delays were adopted [45],
[46]. Through quantitative estimation with finite-difference time
domain (FDTD) wave modeling [47]–[49], time corrections for
a given network can be obtained and easily inputted to the GTA
database in advance, which can significantly improve the accu-
racy of the location network.

The CPU-based GTA algorithm usually has poor efficiency
when extensive computing is needed, which limits its applica-
tions in real-time geolocation networks. With the development
of graphics processing unit (GPU) parallel computing technique,
numerical computations can be largely accelerated [50]. In this
study, we propose a GPU-based GTA algorithm, which is simple
for implementation and is more efficient than a CPU-based GTA
algorithm. Its applications to a 2-D long-baseline network and a
3-D short-baseline network show that GPU-GTA can work effi-
ciently and accurately in locating a lightning source in either 2-D
or 3-D. The high performance of GPU-GTA makes it a practical
algorithm for accurately locating a lightning source in real time.

II. TOA LIGHTNING LOCATION AND GPU-BASED PARALLEL

COMPUTING TECHNIQUE

The TOA algorithm determines the geolocation of lightning
sources with the difference of TOA of electromagnetic field sig-
nals from the same source to different sensors. It has been widely
applied to both 2-D [3] and 3-D [19] lightning networks. Theo-
retically, TOA geolocation networks need at least four sensors to
obtain 2-D locations of the sources (latitude and longitude) and
five sensors for 3-D locations (latitude, longitude, and altitude).
Some redundant sensors are required to get more reliable source
locations. For one baseline containing two sensors, the arrival
time difference can be written as follows:

∆t = t2 − t1 (1)

where t1 and t2 are the arrival times of the source waves mea-
sured at different sensors. ∆t is the time difference between
the two sensors, which can be measured taking the signal onset
times, the windowed cross-correlation in broadband systems, or
the phase difference in narrowband systems.

With multiple baselines, the solution of geolocation can be
obtained by optimizing the objective function f (r) as follows

f (r) =
N−1∑

i=1

|∆ti − (∆t′i (r) + (σ2 − σ1))| (2)

where N is the number of sensors, σ1,2 is the inherent
propagation factors through each path, which can be pre-
determined by the wave propagation modeling. ∆t′i is the
propagation time difference from a source location r to each
sensor: ∆t′i(r) = (d(r, ri)− d(r, r0))/c, where c is the speed

Fig. 1. Sketch map of GTA in a lightning location network. Where the detec-
tion region is separated evenly in grid. Red point is the location of a lightning
source; green points are the locations of sensors; and black points are the try
locations in each grid.

of light and d(r, ri) the distance along the propagating path. For
a short-baseline network around 5–50 km, d(r, ri) is usually de-
fined as the straight distance between the source and the sensor
[17]–[25]. For a short-baseline network like the Vaisala system,
electromagnetic field signals from lightning emission sources
propagate along the earth surface, and therefore, d(r, ri) is de-
fined as the spherical distance between the source and the sensor
[1]–[4], [6]–[16]. For long-baseline network (above 3000 km),
which essentially uses the ELF and VLF bands, (2) is only
suitable for signals with frequencies below the EIWG cut-off
frequency (usually below 2 kHz, differs during day and night
time). For frequencies above the EIWG cut-off frequency, the
TOGA method taking account of the effects of the dispersion
of the EIWG on the lightning sferics is much more preferred
[32]. The conventional method solves the nonlinear iteration (2)
directly (the 3D iteration solver of (2) can be found in [29]) to
find a solution, whereas the GTA traverses prebuilt, discretized
grids of the network region to find the best-fitted solution that
has the smallest f(r). It is straightforward but computing costly,
and thus its overall performance, such as the speed and locat-
ing precision, relies heavily on the grid step and the network
coverage.

A sketch map of a prebuild discretized 2-D region is shown
in Fig. 1. As illustrated in the figure, by computing f(r) at each
grid, the best-fitted source location can be retrieved by finding
the grid having the smallest f(r).

A. Traditional GTA With/Without Parallel Computing

The traditional CPU-based GTA (CPU-GTA) calculates the
at each point, comparing them one by one and remaining the
point that has the smaller f(r), with the whole process being
entirely in a serial way. The performance is rather poor when the
detection region is large, and the grid step is small. Considering a
2-D location situation, when the region is 1000 km south-north,
and 1000 km east-west and the grid step is 250 m, a total of
4000 ∗ 4000 = 16 million; f(r)s must be compared with each
other in one geolocating process, which is almost impossible for
a real-time system.

Fortunately, the GPU parallel computing technique pro-
vides a solution to accelerate the GTA process. GPU, which
is designed on single instruction, multiple data architecture,
contains an array of streamer multiprocessors (SM). Each
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Fig. 2. Illustration of the thread hierarchy of CUDA programming model.
The GRID consists of a 2- or 3-D matrix of BLOCKs, and each BLOCK con-
sists of parallel THREADs. For specified GRID and BLOCK dimensions and a
collective kernel function, the program runs in parallel for all THREADs.

SM has a large number of arithmetic logic units (ALUs) with
only one control unit. All ALUs in one SM run the same
instruction synchronously. The unique configuration of GPU
makes it inherently conducive to numerical computing. Taking
the lightning geolocation as an example, when applying GPU
parallel computing to TOA technique, each ALU will run as
one parallel thread to calculate onef(r). All threads have the
same function to run but with different data streams. Once all
f(r)s are calculated, a reduction algorithm can be invoked to
find the smallest f(r) in a parallel manner.

B. CUDA Programming Model

CUDA is a general-purpose parallel computing platform that
utilizes GPU to solve a large-scale parallel problem. CUDA was
first introduced by NVIDIA in 2006 [51] and is now widely
used in parallel scientific computing scenarios. It provides a
high-level model to program GPU-based parallel applications.
Below is a briefing of the hierarchy of CUDA. CUDA provides
a three-level hierarchy to configure and invoke threads running
on GPU, i.e., GRID, BLOCK, and THREAD.

Fig. 2 illustrates of the three-level hierarchy of the CUDA
programming model. As shown in the figure, the GRID consists
of BLOCKs, and each BLOCK consists of many THREADs.
The dimension of the GRID and BLOCK can be 2 or 3. Once all
model arguments are transferred, a kernel function will then be
run on all threads with a specified GRID and BLOCK dimen-
sions. In geolocation applications, GRID points are assigned to
each THREAD, which has the same kernel function for calcu-
lating f(r) as (2), but with different arguments (i.e., latitude,
longitude, and altitude at each point).

C. Optimal Parallel Reduction Algorithm in CUDA

The final step in GTA is to find the point that has the smallest
f(r). This kind of job can only be run sequentially on a CPU-
based platform. Even on a GPU-based parallel architecture, all
threads cannot compare their f(r)s concurrently. Therefore, a
parallel reduction algorithm is necessary for the optimization of
this job [52].

Fig. 3. Sketch map of parallel reduction algorithm on picking out the smallest
f(r). In a recursive structure, in each step, all threads are divided into two equal
groups, each thread in group A compares its f(r) with one in group B, transferring
the smaller f(r) to group A and discarding the thread in group B. After a thread
synchronization, all group A threads then go to the next run until only one
residual thread left in group A.

Fig. 3 shows a sketch map illustrating the parallel reduction
algorithm. As shown in the figure, the output from every two
threads in one step are compared and the one with smaller f(r)
is swapped frontward in each thread. In this way, the smallest one
will be quickly converged to the first thread in a few steps. The
stride between the two competitors in each step isN/2i, whereN
is the amount of total grid points in a lightning location network
and i is the index number of the step. As such, the smallest
f(r) will be quickly shifted to the first thread in a loop index of
log2N , which leads to the final location result. More details of
the parallel reduction algorithm can be found in [52].

D. GPU-GTA for 3-D Lightning Location

The GPU-GTA algorithm can be easily extended to a 3-D
lightning location network or any other coordinates that have a
describable objective function. For a 3-D location, it needs to
introduce a new argument—altitude h

d (r, ri) =
√

(R (1− cos (θ)) + h)2 + (R sin (θ))2. (3)

Here the earth curvature is considered. Where θ is the arc
length between the two points, R is the earth radius or the local
radius in an ellipsoidal coordinate, and h is the altitude.

E. Multi-Grid Traverse Technique

A 3-D geolocation domain usually has a large number of grid
points. If the grid amount is extremely large, like the traditional
GTA, a multi-grid traverse technique can be introduced to fur-
ther speed up the GPU-GTA process. The multi-grid traverse
technique can be applied at least twice in a traverse to find the
final solution. It first traverses the whole region with a rough
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grid step to find an initial result and then traverses a small re-
gion centered at the initial result with a finer grid to retrieve the
final solution.

III. VALIDATION OF GPU-GTA WITH MONTE CARLO

SIMULATION FOR VARIOUS NETWORKS

In this section, we validate the GPU-GTA algorithm by imple-
menting Monte Carlo simulations of geolocation errors in dif-
ferent sorts of lightning networks [9]. In the simulation, random
time errors are introduced to true arrival times in the geoloca-
tion algorithm and possible location error patterns are estimated
by comparing the GPU-GTA location results with the true lo-
cations. This is the basic idea to understand the accuracy of a
lightning location network or test the location algorithm. For
doing this, first, a Gaussian distributed time error is applied to
each true arrival time from each pre-built location point to each
sensor in a given lightning location network. Second, the “de-
viated” arrival times are input into the GPU-GTA or CPU-GTA
to calculate the locations with errors. Third, the calculated lo-
cations and their pre-built locations are compared to find the
location errors (the distance differences between the two sets
of locations). Then, the spatial pattern of the location errors in
the region covered by the location network is obtained by aver-
aging the location errors from at least 50 times of simulations.
Finally, the performance of GPU-GTA and that of CPU-GTA are
compared, and thus a benchmark to the GPU-GTA algorithm is
given. The initial pre-built location at each point is randomly
generated.

A. For a Long-Baseline 2-D Lightning Location Network

To test GPU-GTA in a 2-D location case, the network op-
erated by the University of Science and Technology of China
is chosen [6], [44]. This network was first deployed in 2012 in
Anhui province over East China, with an upgrade conducted in
2015, which has been named as JASA network since then. The
network was specially designed for lower ionosphere remote
sensing [53]–[55], and the GPU-GTA is already running in this
network, which yielded good data revealing the association of
the Narrow Bipolar Events with and the Blue Jets [56].

JASA consists of six sensors, as illustrated in Fig. 4. Its cov-
erage is 1000 km × 1000 km2 from west to east and from south
to north, and the grid searching step for running GPU-GTA is
in two-level grids with the multi-grid technique. The first-level
grid is 512 ∗ 512 with a grid step of 2 km. The second-level
grid is 512 ∗ 512 with a grid step of 125 m, which is centered
at the position estimated from the first-level grid. In conduct-
ing the Monte Carlo simulation of location errors, a 1-µs rms
Gaussian-distributed time error and a linear propagation delay
of 100 km per 1 µs [the σ in f(r)] are introduced to each event
arrival time at each sensor.

The location error pattern at each randomly generated loca-
tion point is shown in Fig. 4. As shown in the figure, location
errors of GPU-GTA are smaller than 0.5 km inside the inner
polygon region of the network, indicating a high performance of
GPU-GTA running on JASA in 2-D.

Fig. 4. Simulated location error pattern for JASA network running GPU-GTA
with the Monte Carlo method. The JASA consists of six sensors separated over
the area of central China, where the red asterisks indicate the six sensors. The
color of each dot represents the averaged location error at each random location
over the network covering region.

B. For a Short-Baseline 3-D LMA

To test GPU-GTA in a 3-D location case, the low-frequency
interferometric-TOA LMA (LFI-LMA) run by Duke University
during 2014 is chosen [17]. The LFI-LMA consists of five sen-
sors separated by 15–20 km, as illustrated in Fig. 5. This portable
network can be easily deployed to image the 3-D structure and
dynamic development of lightning during thunderstorms [57].

Similar to a 2-D situation, with a 0.1-µs rms Gaussian-
distributed time error introduced to the true TOA, the location
error patterns are obtained with the Monte Carlo simulation with
GPU-GTA. It is implemented in a three-level grid approach, the
first level is 256 ∗ 256 ∗ 18 grids with a step of 1 km, the second
level is 32 ∗ 32 ∗ 16 with a step of 0.4 km, and the third level
is 128 ∗ 128 ∗ 120 with a step of 25 m. The second level grid is
centered at the position estimated from the first level one, and
the third level grid is centered at the position estimated from
the second level one. The results are shown in Fig. 5, where
the horizontal (left) and vertical (right) location errors for the
altitude of 5, 10, and 15 km are shown in subplots from top to
bottom in the figure, respectively. As shown in the figure, the
location error is much smaller at a higher altitude, with the error
being less than 200 m over a much larger area at an altitude of
15 km. In a 3-D situation, since the solution surface of a baseline
close to the ground tends to be tangential to the solution surface
of another baseline, this may cause larger vertical uncertainty
when close to the ground. The results show that LFI-LMA run-
ning GPU-GTA in 3-D can perform quite well, with the location
errors being less than 200 m over most of the network coverage.

C. Location Accuracy of Networks Running GPU-GTA With
Different Grid Steps

The geolocation accuracy is heavily subjected to the grid step
used in GPU-GTA. Theoretically, if the grid step is finer enough,
GPU-GTA can provide the ultimate location accuracy. However,
a real lightning location system always has certain deviations
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Fig. 5. Simulated location error patterns for Duke LFI-LMA network running
the GPU-GTA algorithm with the Monte Carle method. The LFI-LMA was con-
sisted of five sensors separated by 15–20 km around Duke University, where the
red asterisks indicate the five sensors’ locations. The color of each dot represents
the averaged location error at each random location over the network covering
region. The top two subplots are for the horizontal (left) and vertical (right)
errors for the altitude of 5 km, and the middle two and the bottom two for that
of the altitude of 10 km and 15 km, respectively.

that limit the ultimate location accuracy the system can achieve.
One such deviation is the time measuring the uncertainty of
sensors in a network. It may come from the GPS timing uncer-
tainty, data acquisition sampling rate, system operating band-
width, signal-to-noise ratio as well as the method to extract the
times from the recorded signals at different sensors. Although
most of these factors are system hardware related, we just dis-
cuss the location accuracy versus the grid step under a fixed time
uncertainty. This is particularly needed for finding the limitation
of a network running GPU-GTA.

Fig. 6 shows the statistics of 2-D location errors in JASA run-
ning GPU-GTA with different grid steps, where a time uncer-
tainty of 1 µs rms is applied. As shown in the figure, considering
the total number of points with location errors less than 500 m
as a benchmark, it is 4174, 4684, and 4746 for the final grid
step of 500, 250, and 125 m, respectively. From the grid step of
500–250 m, the number of highly accurate locations increases
by 510 or 12%. But from the grid step of 250 m to 125 m, that
number only increases by 62 or 1.3%. This property could be
attributed to the 1 µs rms time uncertainty introduced to each
sensor, making the network with a location ambiguity between

Fig. 6. Statistics of 2-D location errors in first 1 km of JASA running GPU-
GTA with different grid steps and 1 µs rms time uncertainty. The subplots from
top to bottom are for the grid step of 500, 250, and 125 m respectively.

Fig. 7. Statistics of 3-D location errors in first 500 m of Duke LFI-LMA
running GPU-GTA with different grid steps and 0.1 µs rms time uncertainty at
the altitude of 10 km. The subplots from top to bottom are for the grid step of
100, 50, and 25 m, respectively.

250 and 500 m. This suggests that 250 m may be the most eco-
nomical grid step for JASA running GPU-GTA algorithm with
a time uncertainty of 1 µs rms, resulting in an ultimate location
accuracy of about 250 m.

Fig. 7 shows the histogram of 3-D location errors of Duke
LFI-LMA running GPU-GTA with different grid steps and
0.1 µs rms time uncertainty at the altitude of 10 km. With the
number of location point whose error is less than 100 m as a
reference, when the grid step decreases from 100 m to 50 m,
this number increases from 1675 to 2154, a big increase of 479
or 29%. However, when the grid step further decreases from
50 to 25 m, this number increases from 2154 to 2307, just an
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Fig. 8. Comparison of the processing time between the CPU-GTA and GPU-
GTA for locating 100–1000 events in a three-sensor 2-D network with a grid
extension of 2000 ∗ 2000. Dotted line is for CPU-GTA and solid line is for
GPU-GTA.

increase of 153 or 7%. This suggests that the most economical
grid step for LFI-LMA running GPU-GTA algorithm with a time
uncertainty of 0.1 µs rms may be 50 m, resulting in an ultimate
location accuracy of about 50 m.

Above-mentioned results indicate that GPU-GTA can work
well with a reasonably high location accuracy in the inner region
of either a 2-D network like JASA or a 3-D network like LFI-
LMA. Also, the results show that the location accuracy is limited
by the level of the inherent time uncertainty of the network, rather
than the grid step if the grid step is small enough. GPU-GTA can
give the ultimate accurate result when the grid step is suitable.

IV. PERFORMANCE OF GPU-GTA

The most significant merit of the GPU-GTA algorithm is that
it can greatly increase the speed of computation compared with
CPU-GTA. The processing speed is crucial to a lightning loca-
tion network, especially for those built for real-time reporting.
To have a quantitative evaluation of the GPU-GTA performance,
we estimate the processing time for locating a certain number of
events under a specific network with GPU-GTA and compare it
with that of CPU-GTA.

Fig. 8 shows a comparison of the processing times between
the CPU-GTA and GPU-GTA for locating 100–1000 lightning
events in a 3-sensor 2D network with a grid extension of 2000 ∗
2000. Under such a configuration, locating one lightning event
needs the GTA algorithm traversing all the 4 000 000 points.
As can be seen from the figure, the GPU-GTA is generally 2700
times faster than the CPU-GTA under such a configuration.

Fig. 9 shows a comparison of the computing speeds of the
GPU-GTA between three different setups of a two-level-grid
traverse technique for a six-sensor 2-D network like JASA. In
a two-level-grid traverse technique, the traversing process can
start with a relatively big initial grid step (e.g., 2 km). Once an
initial event position is acquired with the initial grid step, a finer
grid step (e.g., 125 m) can be taken to traverse a small space cen-
tered at the initial position to get the accurate event position. In
the figure, while the first-level grid is set at a step of 2 km with an
extension of 512 ∗ 512, the second-level grid is set at three differ-
ent steps of 500, 250, and 125 m corresponding to three different
extensions of 128 ∗ 128, 256 ∗ 256, and 512 ∗ 512, respectively.

Fig. 9. Comparisons of processing times of GPU-GTA operated in a six-sensor
2-D network like JASA with three different sets of grid steps and extensions.
While the first level grid is set with a grid step and an extension of 2 km and
512 ∗ 512, the second level grid is set with three different grid steps/extensions
of 500 m/128 ∗ 128 (solid line), 250 m/256 ∗ 256 (dotted line), and 125 m /
512 ∗ 512 (dashed line), respectively.

Fig. 10. Comparisons of processing times of GPU-GTA running in a five-
sensor 3-D network like LFI-LMA with a three-level-grid traverse technique
under three different grid step and extension settings. The first- and second-
level grid steps are 1 km and 0.4 km with a grid extension of 256 ∗ 256 ∗ 18 and
32 ∗ 32 ∗ 16, respectively. The third-level (final) grid is set with three different
steps/extensions of 100 m/32 ∗ 32 ∗ 30 (solid line), 50 m/64 ∗ 64 ∗ 60 (dotted
line) and 25 m/128 ∗ 128 ∗ 120 (dashed line), respectively.

As can be seen from the figure, with the increase in the grid
extension, the processing time increases linearly. It costs about
2.7 s to locate 1000 events in this 6-sensor network covering an
area of 1000 km × 1000 km with the grid step of 125 m. Such
a computing speed could be efficient enough for a real-time
lightning network.

Similar to the 2-D case, the performance of GPU-GTA in a
3-D network is also evaluated.

Fig. 10 shows the processing times of GPU-GTA operated in
a five-sensor 3-D network like LFI-LMA with a three-level-grid
traverse technique with three different grid settings. The first-
level (initial) grid is set with a step of 1000 m and an extension
of 120 ∗ 120 ∗ 18, corresponding to a cube of 256 km ∗ 256 km ∗
18 km (altitude). The second-level grid is set with a step of 0.4 km
and an extension of 32 ∗ 32 ∗ 16. The third-level (final) grid is set
with three different grid steps of 100, 50, and 25 m, respectively,
with a grid extension of 32 ∗ 32 ∗ 30, 64 ∗ 64 ∗ 60, and 128 ∗ 128
∗ 120, respectively, corresponding to a cube of 3.2 km ∗ 3.2 km ∗
3.2 km centered at the position estimated from the second-level
grid. As shown in the figure, it takes about 3.2, 3.6, and 4.3 s to
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locate 1000 points in 3-D at the accuracy of 100, 50, and 25 m
respectively. Again, the speed of GPU-GTA is efficient enough
to satisfy a real-time 3-D lightning network like LFI-LMA. It
should be pointed out that the computing platform for the CPU-
and GPU-based GTA in this study is Core i7 6700k and GeForce
GTX 1080ti, respectively. The GPU-GTA algorithm should be
much faster on a better GPU workstation.

V. CONCLUSION

A GPU-based grid traverse geolocation algorithm (GPU-
GTA) for lightning location networks is proposed and examined.
The overall performance of GPU-GTA is examined by apply-
ing it to JASA (a six-sensor 2-D lightning location network in
central China) and LFI-LMA (a five-sensor 3-D LMA in Duke
University). The results show that the GPU-GTA algorithm can
be easily implemented in both 2-D and 3-D lightning geoloca-
tion networks or any other multi-station networks. The location
accuracy of GPU-GTA is validated with Monte Carlo simula-
tions. The results show that GPU-GTA can locate a lightning
source with sufficient accuracy over the coverage of a network.
The processing time of GPU-GTA to locate a lightning event
is found to be 2700 times faster than that of CPU-GTA, mak-
ing GPU-GTA efficient enough for locating a source in 3-D in
real-time.

Moreover, GPU-GTA can give a more accurate lightning event
location than the traditional one. As we know, most existing
lightning location networks are based on real-time analytical
solutions of certain simple models, whereas the reality is much
more complicated. With GPU-GTA, for a given network, one
can build up a database based on numerical solutions of cer-
tain complete models under various scenarios in advance, and
the lightning event location can then be easily determined with
the GTA in real time. For example, the earth ground is rough,
and its topography always causes inherent propagation delay of
the lightning electromagnetic pulse to sensors away from the
lightning source. This kind of time delay can be easily predicted
with FDTD wave simulation in advance and pre-input to the
GTA database [47]. GPU-GTA can then take this pre-input time
delay into account to get a more accurate lightning event location
than the traditional one.
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