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Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems
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Exceptional points (EPs) are responsible for a number of interesting phenomena in non-Hermitian wave
systems. Here we show, both theoretically and experimentally, that EPs can be synthesized in non-Hermitian
acoustic systems with unbalanced loss factors in different sections. Numerical simulations and measurements
confirm that unidirectional zero reflection, one of the hallmarks of EPs, can be realized in such a compact
system with controlled Willis coupling and loss. When approached from one direction in the parameter space,
the material slab mimics a conventional parity-time (PT) symmetric system. Our findings provide an efficient
way for advanced engineering of scattering properties of artificial acoustic materials with EP-related physics.
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I. INTRODUCTION

The emergence of exceptional points (EPs) in non-
Hermitian systems has stimulated extensive research interest
in recent years [1–3]. In a two-level system, EPs mark the
spontaneous symmetry-breaking transition point in which the
energy spectrum jumps from real to complex value abruptly
[3–5]. This type of phase transition exists in non-Hermitian
Hamiltonians and is responsible for a number of useful and
unexpected phenomena. Although EPs were originally an-
alyzed in the realm of quantum mechanics, they have at-
tracted research effort in other regimes as well, thanks to the
mathematical equivalence between Schrödinger equation and
paraxial electromagnetic wave equations. To date, EPs have
been studied in various physical systems, including optics
[6–9], photonics [10–13], acoustics [14–18], and others
[19–21]. Numerous intriguing applications have been demon-
strated within the context of EPs, such as unidirectional invis-
ibility [9,15], single-mode or vortex lasers [22–24], enhanced
sensing [25,26], and topological effects [27–29].

Physical realizations of EPs generally fall into two
categories. The first approach is to use PT-symmetric
synthetic media, in which the constitutive components are
patterned so that the entire system display an exact balanced
loss and gain. Such PT-symmetric media typically involve
wave amplification/absorption materials or structures and
precise control of their spatial variation for the access of the
whole complex parameter domain to respect PT symmetry.
The lack of easily controllable gain media also poses
additional challenges on the fabrication of a PT-symmetric
medium, as an external energy supply or a means of field
control are required. Although entirely passive PT-symmetric
media have been proposed [9,30], a continuous varying loss
profile is demanded which inevitably adds to the system
complexity.

The other approach to realize EPs uses coupled sys-
tems such as resonators, cavities, or waveguides. Although
these systems exhibit EPs in a compact implementation, they
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require relatively sophisticated design and carefully controlled
loss within the system. The coupling strength and addi-
tional loss, which are critical for the synthesis of EPs, may
be unstable under small perturbations and are difficult to
control precisely in practice. These requirements make EPs
difficult to access physically, limiting their use in practical
applications.

A necessary condition for the formation of EPs is the coa-
lescence of the eigenstates of the scattering matrix, which re-
quires |r+| �= |r−|. This means that the system should exhibit
a directionally dependent response under different excitations.
Bianisotropic media are possible candidates to realize such
asymmetric responses. The term bianisotropy originates from
electromagnetism [31] and the concept is the direct analog
to Willis coupling [32] in acoustics and elastodynamics, in
which a cross coupling between strain and velocity takes
place. Recent studies have shown that bianisotropic acoustic
media can lead to asymmetric responses [33–37]. However,
they are generally designed to be lossless and thus obey
|t±|2 + |r±|2 = 1, in which t± and r± are the local transmis-
sion and reflection coefficients in the forward and backward
directions, respectively. As t+ = t− for reciprocal systems,
the amplitudes of the local reflection coefficients are the same,
i.e., |r+| = |r−|. Therefore, lossless bianisotropic structures
do not have access to EPs and are not suitable for unidirec-
tional scattering manipulation with different amplitudes.

In this paper we show that EPs can be systematically syn-
thesized in bianisotropic non-Hermitian acoustic systems with
engineered loss. When loss is carefully incorporated into the
system, unidirectional zero reflection, i.e., vanishing reflection
in only one direction of illumination, can be realized in the all-
passive structure. This property is a result of degenerate non-
Hermitian scattering matrix at the EP of the system. Distinct
from conventional PT-symmetric systems where loss and gain
need to be judiciously tailored, the EPs proposed here can be
synthesized conveniently by adding appropriate loss into the
host medium of the system. Moreover, no continuous variation
of loss is required for the synthesis of EPs. Such compact,
entirely passive structure can serve as a versatile platform to
engineer scattering properties and explore EP-related physics.
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FIG. 1. Sketch of the bianisotropic system composed of three
thin plates and two lossy medium regions. All the components are
loaded in a circular waveguide to ensure 1D wave propagation. The
arrows indicate incident acoustic waves from different directions.

II. THEORY AND DESIGN

To begin with, we consider an asymmetric structure as
shown in Fig. 1. The structure consists of two lossy medium
regions and is loaded in a circular waveguide. Thin plates
are connected at the termination of each region. The lengths
of the two regions are L1 and L2, respectively and are not
equal. Such a structure lacks inversion symmetry and there-
fore exhibits bianisotropic response. It is worth pointing out
that, to realize unidirectional scattering properties, asymmetry
is essential since the behavior of a symmetrical structure is
the same regardless of the direction of incidence. It has been
shown that for a lossless and reciprocal system, the ampli-
tudes of the reflection coefficients when illuminated on two
sides are identical [36]. In order to obtain different reflection
amplitudes, loss is introduced as another ingredient so that
the system becomes non-Hermitian. To do this, loss factors
δ1 and δ2 are assumed in the two medium regions and the
wave number ki inside the medium becomes ki = k0(1 − jδi ),
where k0 is the free space wave number. While the impedances
of the plates can generally be different to allow arbitrary
bianisotropic response [33,36,38], here they are considered
identical for simplicity and we will show that the geometrical
asymmetry and unbalanced loss factors are sufficient for the
synthesis of EPs.

The system can be analyzed by the standard two-port
network model as below:[

pin

−n̂ · �vin

]
=

[
A B

C D

][
pout

−n̂ · �vout

]
. (1)

Here pin and pout represent the input and output complex
pressure amplitudes at the two terminals of the structure, n̂

is the normal vector of the wave propagation direction, and
�vin and �vout are the associated input and output velocity fields.
The total transfer matrix is expressed as[

A B

C D

]
= MZMT1MZMT2MZ. (2)

MZ and MTi are the transfer matrices of the plate (regarded
as an impedance Zs) and the lossy medium, respectively, and
are expressed as

MZ =
[

1 Zs

0 1

]
, (3)

MTi =
[

cos(kiLi ) jZ0 sin(kiLi )

j 1
Z0

sin(kiLi ) cos(kiLi )

]
, (4)

where Z0 = ρ0c0 is the characteristic impedance of the back-
ground medium (air in our study), with ρ0 and c0 being the
density and speed of sound in air. Generally Z0 will be a
complex number by the introduction of loss, however, its
absolute value change is small and the resulting impedance
mismatch is therefore negligible. We note that the plates serve
as impedance sheets in the transmission line system, and they
can be replaced by other structures that can be regarded as an
impedance, e.g., side-loaded Helmholtz resonators. Here we
chose to use paper plates for the sake of the compactness of
the system. The corresponding S matrix of the system can be
derived as (note that the S matrix here is different from its
conventional form in electromagnetics [39,40])

S =
[
t− r−
r+ t+

]
=

[ 2
A+B/Z0+CZ0+D

−A+B/Z0−CZ0+D

A+B/Z0+CZ0+D

A+B/Z0−CZ0−D

A+B/Z0+CZ0+D
2

A+B/Z0+CZ0+D

]
. (5)

To this end, the components of the S matrix of the system
are first calculated by inserting Eqs. (3) and (4) into Eq. (5)
and varying δ1 and δ2 in the parameter space. Without loss
of generality, Zs is set to be i620 Pa · s/m, which is purely
imaginary. This condition can be satisfied if the plates are thin
and elastic and can be considered lossless. The value is chosen
such that it is moderate compared to Z0 (Zs = 1.46iZ0) and is
therefore conveniently attainable for plate-type metamaterials
[41]. On the other hand, as will be shown later, this Zs will
lead to a reasonable set of δ1 and δ2 values that need to be
realized in experiments to induce EPs. The frequency of the
incident wave is chosen to be 2.95 kHz for the convenience of
experimental realization. Operation at other frequencies can
be achieved simply by changing the geometrical configuration
of the system such that the plates have desired impedance.
Figures 2(a)–2(c) depict the calculated absolute values of
r+, r−, and t+(t−) against the two control parameters δ1

and δ2, with fixed lengths L1 = 20 mm and L2 = 30 mm.
The local reflectance display different characteristics while
the transmittance is identical in both directions. This is be-
cause the system is linear time invariant and does not break
the reciprocity. Unidirectional zero reflection, i.e., r+ = 0 and
r− �= 0, occurs when δ1 = 0.02 and δ2 = 0.22.

To confirm that this operation point is truly an EP, we
further calculate the eigenvalues of the S matrix λ1,2 = t ±
(r+r−)1/2 (here t = t+ = t−) by setting δ1 = 0.02 and in-
creasing δ2 monotonically. As can be seen from Figs. 2(d)
and 2(e), at δ2 = 0.22, there is a coalescence of the real part
of the eigenvalues and the imaginary part experiences biased
distributions when δ2 > 0.22. The absolute values of λ1,2

shown in Fig. 2(f) undergo a phase transition at this point and
the two eigenstates become degenerate. Such an eigenvalue
spectrum is quite similar to the behavior of a PT-symmetric
system that is experiencing a change from PT-exact phase
to PT-broken phase at the EP. Interestingly, the eigenvalues
are not unimodular at the EP compared with balanced PT-
symmetric systems. This is similar to a passive PT-symmetric
system in which the eigenvalues are offset by the introduction
of losses [30].

It should be pointed out that although δ1 is not zero, the
system can still possess EPs if medium 1 is entirely lossless
(i.e., δ1 = 0). In other words, in our transmission-line system,
the additional tuning of δ1 is not required in order to form an
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FIG. 2. Characteristics of the non-Hermitian acoustic system. (a)–(c) Scattering parameters of the system in the parameter space δ1,2. The
reflection coefficients r+ and r− show distinctive behavior, which is a clear signature of asymmetric response. The arrow marks unidirectional
zero reflection, which occurs for δ1 = 0.02 and δ2 = 0.22. (d) Real and (e) imaginary part of the eigenvalues in the parameter space. The
eigenvalues are plotted as a function of δ2 by fixing δ1 = 0.02. (f) Absolute eigenvalues of the corresponding S matrix.

EP. Medium 1 can generally be either lossless or lossy and
only δ2 is important in the parameter space so that an EP
appears. Here it is chosen to have a finite value to represent
a typical loss in the experimental environment. The corre-
sponding Zs for the emergence of an EP with only one lossy
medium (medium 2) can be calculated by enforcing δ1 = 0
and r+ = 0, which is found to be i580 Pa · s/m. Likewise,
an EP can also be achieved by keeping δ2 = 0 and varying
δ1. Since the only parameter that needs to be tuned is δ2,
the proposed scheme here using bianisotropic non-Hermitian
system greatly facilitates the synthesis of an EP.

To fully design the physical system, the radius r of the
circular waveguide must be determined such that the paper
plates display the desired impedance. The acoustic impedance
of the plates with clamped boundaries can be computed by
a lumped model described by acoustic compliance Ca and
acoustic mass Ma [41,42]:

Za = 1

jωCa

+ jωMa. (6)

For circular plates, the values can be approximated by
Ma = 1.8830 ρph

πr2 and Ca = πr6

196.51D
, where ρp, h, and D are

the density, thickness, and flexural rigidity of the plate, re-
spectively. The characteristic impedance Zs of the plate is
therefore Zs = ZaA with A = πr2 being the surface area
of the plate. For the plates we use in the study, the density
and thickness are 728 kg/m3 and 0.26 mm, respectively. The
flexural rigidity is determined by measuring the transmission
spectrum of a single plate [43]. For a circular plate with

clamped boundaries, the flexural rigidity is given by [44]

D = 0.0383f 2
0 A2ρph, (7)

where f0 is the first resonance frequency of the plate. Figure 3
shows the measured transmission coefficient through a single
paper plate with r = 10 mm. The peak frequency is 2.81 kHz,
with transmission coefficient being greater than 0.9, which
justifies the assumption of low loss of the paper plates around
resonance frequencies. From Eq. (7), the flexural rigidity of

FIG. 3. Experimentally measured transmission spectrum through
a single paper plate with clamped boundaries. The first resonance
frequency (corresponds to a transmission peak) is found to be f0 =
2.81 kHz.
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FIG. 4. Simulated sound pressure distribution and mode shape of the plates of the non-Hermitian acoustic system. The incident waves
are omitted for better visualization of the reflected waves. Top and bottom panels show the forward and backward incidence, respectively.
(a) Response at the designed frequency 2.95 kHz, with zero reflection in the forward direction. (b) Response at a slightly higher frequency
3.00 kHz, the reflection in both directions has a finite value.

the plates is found to be 0.0057 Pa · m4. The calculated radius
r of the plate according to Eq. (6) is 10 mm so that Zs =
i620 Pa · s/m at 2.95 kHz, and is used in the following section
for numerical simulations and experiments.

III. SIMULATION AND MEASUREMENTS

Full-wave simulations are performed with the finite ele-
ment solver COMSOL Multiphysics. The pressure acoustic
module and solid mechanics module are used so that both
lossy medium and plates can be fully modeled. The acoustic
pressure distribution and mode shapes of the plates are shown
in Fig. 4 at 2.95 and 3.00 kHz. It can be seen that for incoming
waves in opposite directions, the reflected pressure fields dis-
play vastly different characteristics at the designed operational
frequency 2.95 kHz. The reflection in the forward direction is
almost zero, which agrees well with theoretical predictions.

When the incident frequency is increased to 3.00 kHz, the
reflection increases in the forward direction. On the other
hand, the acoustic pressure distributions on the transmission
are identical for both frequencies in terms of amplitude and
phase since the system does not break reciprocity.

To experimentally demonstrate unidrectional zero reflec-
tion with the bianisotropic system, a prototype is constructed
with the configuration described and simulated above. The
experimental setup is shown in Fig. 5(a). The tubes are three-
dimensionally (3D) printed using nylon whose impedance is
much greater than air and can be considered acoustically rigid.
The thickness of the tubes is 5 mm to ensure one-dimension
(1D) wave propagation. The plates are rigidly clamped be-
tween adjacent sections of the tubes and a speaker with 0.9 cm
radius and 4 Ohm input impedance is positioned at one end
of the tube. The speaker is powered by an amplifier (type
PAM8403) and generates acoustic waves to excite the system.

FIG. 5. (a) Experimental setup for reflection measurement. Two microphones are inserted into the tube to capture the incident and reflected
signals. The inset shows how the microphones are positioned inside the tube. (b) Measured transmission coefficient and (c) retrieved loss factor
of the 3 cm lossy medium.
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FIG. 6. Experimental demonstration of unidirectional zero reflection of the non-Hermitian acoustic system. Measured and simulated
reflection spectrum in the (a) forward and (b) backward directions. The error bars are generated out of six measurements.

To measure the reflection of the sample, two breakout boards
(type ADMP401) are mounted inside the tube with a distance
of 4 cm. The breakout boards have a size of 13.6 mm by
10.4 mm and feature a 1.2 mm diameter MEMS microphone
on the tip. The boards are slid into the tube through a slit
such that only the tip is inserted into the tube to ensure
minimal contact with the field [see the inset of Fig. 5(a)].
The microphones are oriented on the same side in front of
the sample and the signals are recorded and data acquisition
is performed using NI board PCI-6251 and CB-68LP as the
interface. The reflectivity is extracted via the standard two-
microphone method [45]. The direction of incident waves is
then switched to obtain the response of the other direction.
Six individual measurements are averaged to reduce noise.

The loss factors of the two medium sections are first
determined so that they display theoretically required values.
For lossy medium 1, its loss factor δ1 = 0.02 represents a
typical loss in the experimental environment and therefore
no additional tailoring is applied [46]. On the other hand, for
lossy medium 2, a suitable amount of additional loss should
be introduced so that its loss factor reaches 0.22. To do this,
several equally spaced disklike pieces of sponges [47] are
inserted inside the tube. The radius of the sponges is identical
to the inner radius of the tube r so that an effectively uniform
lossy region can be created. The loss factor can be adjusted by
varying the number and thickness of the sponges that are used.
Since the sponges are dissipative to acoustic waves, higher
loss factors can be obtained by monotonically increase the
overall sponge thickness that is inserted in the tube until the
requirement is met [48]. To show the tunability of the lossy
medium using sponges, we measure the transmission coeffi-
cient of medium 2 with different configurations of sponges
and the results are depicted in Fig. 5(b). The blue and red
curves represent the cases of using two 3-mm-thick and three
4-mm-thick sponges, respectively. Clearly the transmission
coefficient decreases with more and thicker sponges added.
We further calculate the corresponding loss factors of the
medium using the transfer matrix method. Figure 5(c) shows
the calculated loss factors of the two cases. The retrieved
loss factors are a little dispersive and are slightly larger
at higher frequencies, which is typical for sound absorbing
sponges. The retrieved loss factor is roughly 0.22 around the

operational frequency (2.95 kHz) and corresponds to the case
used in the study.

Figures 6(a) and 6(b) show the measured reflection spec-
tra of the sample in the forward and backward directions.
Good agreement is observed between the simulated results
and measurements. The small discrepancies can be attributed
to the slight nonuniformity of the paper plates and weak
scattering caused by the microphones. The operational fre-
quency for unidirectional zero reflection is slightly shifted
from 2.95 to 2.96 kHz in experiments, which can be caused by
nonideal performance of the plates due to imperfect bound-
ary conditions and small material loss. The non-Hermitian
bianisotropic system shows distinctly different reflection char-
acteristics in opposite directions, indicating unidirectional
scattering properties. At 2.95 kHz, the reflectivity in the
forward direction approaches −30 dB in both simulations and
experiments, while reflectivity in the backward direction is
much larger and near −5 dB in measurement. This clearly
illustrates exceptional point behavior of the system.

IV. CONCLUSIONS

To conclude, we have shown both theoretically and experi-
mentally that a non-Hermitian bianisotropic acoustic system
can exhibit the exceptional point behavior of much more
complicated PT-symmetric systems. The constraint of bal-
anced loss and gain can be relaxed for the synthesis of EPs
in such a material slab. Unidirectional zero reflection, a key
property of PT-symmetric systems, can be realized by adding
modest loss to the constitutive medium of an appropriately
designed system. The bianisotropy and non-Hermiticity add a
new degree of freedom to the system design and it is shown
that they can contribute to strongly asymmetric scattering
properties. Although such EPs are demonstrated in the acous-
tic regime, the theory is not restricted to acoustics and can
easily be extended to other scenarios such as microwaves.
For example, the plates can be replaced by impedance sheets
and the lossy medium can be realized by materials with
certain dielectric loss. The size of the structure in our study
is less than half of the operational wavelength and can be
reduced by further optimization. The structure is also able to
be integrated into two dimensions in the lateral direction to

125203-5



SHEN, LI, PENG, AND CUMMER PHYSICAL REVIEW MATERIALS 2, 125203 (2018)

form a metasurface. The bianisotropic non-Hermitian systems
demonstrated here can serve as a simple platform for the
exploration and realization of EP-related physics and can thus
find applications in directional sensing and communication,
unidirectional invisibility, and other areas without the need for
more complicated full PT-symmetric systems.
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