Transistor-based metamaterials with dynamically tunable nonlinear susceptibility
John P. Barrett, Alexander R. Katko, and Steven A. Cummer

Citation: Applied Physics Letters 109, 061901 (2016); doi: 10.1063/1.4960767
View online: http://dx.doi.org/10.1063/1.4960767
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/109/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
A frequency and bandwidth tunable metamaterial absorber in x-band

Mechanically stretchable and tunable metamaterial absorber

Conductive rubber based flexible metamaterial

Time-varying transistor-based metamaterial for tunability, mixing, and efficient phase conjugation
J. Appl. Phys. 115, 144501 (2014); 10.1063/1.4871195

Ferrite based metamaterials with thermo-tunable negative refractive index
Transistor-based metamaterials with dynamically tunable nonlinear susceptibility

John P. Barrett, Alexander R. Katko, and Steven A. Cummer
Department of Electrical and Computer Engineering and Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA

(Received 19 April 2016; accepted 29 July 2016; published online 8 August 2016)

We present the design, analysis, and experimental demonstration of an electromagnetic metamaterial with a dynamically tunable effective nonlinear susceptibility. Split-ring resonators loaded with transistors are shown theoretically and experimentally to act as metamaterials with a second-order nonlinear susceptibility that can be adjusted through the use of a bias voltage. Measurements confirm that this allows for the design of a nonlinear metamaterial with adjustable mixing efficiency. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960767]

Broadly defined as structures with bulk properties different from the properties of their constituent materials, metamaterials have been used to demonstrate a wide variety of interesting and exotic properties including negative index of refraction,1–3 zero index of refraction,4 hyperbolic dispersion,5 and many other results unusual or unattainable with natural materials.6,7 In turn, metamaterials with these properties have been utilized to design devices with exciting characteristics, such as invisibility cloaks,8 super9,10 or hyperlenses,11 and time reversal lenses.12,13 The bulk of the early metamaterial work concentrated on realizing interesting linear effective properties, but recently the focus has shifted to nonlinear properties and active control of metamaterials.

Nonlinear metamaterials have been demonstrated relying on both embedded devices (typically at RF15,16) and intrinsically nonlinear materials (typically at higher frequencies). The approach of embedding nonlinear circuit elements at RF has yielded metamaterials with a wide range of useful characteristics, including harmonic generation,16–18 three- and four-wave mixing,19–21 phase conjugation,22 RF limiting,23 spatiotemporal solitons,24 and tunable Fano resonance, as well as tunable resonance characteristics based on both DC voltage control25 and incident power level.26 The embedded devices at RF have included varactor diodes,22,26,27 PIN diodes23 and MEMS devices.28 Nonlinear metamaterials can be described by effective nonlinear susceptibilities.21,29,30 Using varactor diodes, the effective second-order nonlinear susceptibility \(\chi^{(2)} \) was retrieved and shown to agree with analytical and perturbative approaches.21,30

Greater control and a wider range of effective properties can be achieved by moving beyond two-terminal devices. It has been recently shown that using more complex devices such as transistors can improve the performance of a nonlinear metamaterial by increasing its mixing efficiency.31 In this work, we extend previous work by demonstrating that the use of transistors embedded in metamaterials provide a wide range of realizable nonlinear properties. Using the extra design freedom provided by a transistor, we gain tunability of nonlinear properties as well as linear properties. In particular, we show experimentally that a transistor-embedded split-ring resonator (SRR) can be used to realize a metamaterial with dynamically tunable nonlinear susceptibility.

For this work, we focus on an n-channel MOSFET (specifically the BSS83) as the transistor of choice. There are multiple regions of operation for a MOSFET which depend on the bias conditions at the terminals, which in turn control the effective properties of the transistor. The particular operating region of interest for this work is the subthreshold region in which \(V_{GS} < V_T \), where \(V_T \) is the threshold voltage and \(V_{GS} \) is the gate-source bias. When a transistor is biased in subthreshold, the transistor state has not reached the onset of strong inversion and is either in accumulation, depletion, weak inversion, or moderate inversion.

There are several models for describing the DC characteristics of a transistor operating in the subthreshold region which are helpful in determining the approximate incremental resistance and simplifying the analysis to that of a diode with a tunable reverse saturation current \(I_s \). The reverse saturation current can change by several orders of magnitude which will help tune the overall nonlinearity of the system. The exponential dependence of \(I_s \) on \(V_{GS} \) will result in the scaling of each term in the Taylor series expansion of the exponential, resulting in an increase in the generated harmonic currents through the conductive element. However, if the drain-to-source voltage \(V_{DS} \) is small enough, the primary method of current conduction in the device is capacitive rather than resistive, resulting in the need for developing a small signal model.

The completion of the small-signal behavior within the transistor requires determining all the capacitances that are associated with the MOSFET device. The application of voltages on the various terminals of the MOSFET redistributes charges, essentially making several tunable capacitors. For example, changing \(V_{GS} \) will change the charge distribution directly underneath the oxide through the creation of an inversion layer. The capacitances that are caused by this charge redistribution are called intrinsic capacitances and exhibit voltage dependence in very different ways than from a typical varactor diode.32,33 There are additional capacitances in the transistor device that are directly caused by the physical structure of the device (oxide, diodes, etc.) and are

\(^{a}\)Now with Pivotal Communications, Bellevue, WA 98005, USA.

\(^{b}\)Electronic mail: cummer@duke.edu
called extrinsic capacitances which will affect the transistor operation in addition to the intrinsic capacitances.

Based on how the transistor is embedded within the SRR (Fig. 1(a)) and electrically connecting the bulk and source \(V_{DS} = V_{DB} \), we will assume that the primary capacitances (Fig. 1(b)) that will be utilized are the intrinsic bulk to drain capacitance \(C_{bd} \) and extrinsic capacitance created from the bulk-drain diode \(C_{bde} \). Both these capacitances are voltage dependent which will result in the generation of harmonics when a single frequency sinusoidal signal is applied. There are other capacitances that will affect the total nonlinearity but for this specific transistor configuration in the threshold region and \(V_{DS} \) is 0 forcing the primary current pathways through the transistor are through the intrinsic \(C_{bd} \) and extrinsic \(C_{bde} \) capacitances. The SRR geometry is \(4 \text{ cm} \times 4 \text{ cm} \).

\[
\begin{align*}
C_{bd}(V_{DB}, V_{GS}) &= (n-1)C_{gd}, \\
C_{gd}(V_{DB}, V_{GS}) &= C_{os} \left[\frac{1}{C_{gs}(i_r, i_f)} + \frac{1}{C_{gw}(i_r)} \right]^{-1}, \\
C_{gs}(i_r, i_f) &= \frac{2}{3} \left[1 - \frac{i_f}{(\sqrt{i_r} + \sqrt{i_f})^2} \right], \\
C_{gw}(i_r) &= i_r \frac{1}{\sqrt{i_r} + \sqrt{i_r} + 1}, \\
i_r(V_P) &= \left[\ln \left(1 + e^{\frac{V_P}{VT}} \right) \right]^2, \\
i_f(V_P) &= \left[\ln \left(1 + e^{\frac{V_P-V_{th}}{VT}} \right) \right]^2, \\
V_P(V_{GS}) &= \frac{V_{GS} - V_T}{n}, \\
C_{bde}(V_{DB}) &= C_0 \left(1 + \frac{V_{DB}}{V_T} \right)^{-M}.
\end{align*}
\]

To quantify the strength of the generated harmonics and assuming that the signal voltage across the terminals is sufficiently small, \(C_{bd} \) and \(C_{bde} \) can be expanded around \(V_{DS} = 0 \) as a Taylor series.

\[
C(V_{DS}) = C_0 + C_1 V_{DS} + C_2 V_{DS}^2 + \cdots \quad (9)
\]

\[
C_n = \frac{1}{n!} \frac{\partial^n C}{\partial V_{DS}^n} \bigg|_{V_{DS}=0} .
\]

From the frequency domain, the magnitude of current through a capacitor is proportional to the product of the capacitance and the voltage \(I \propto CV \). If \(V = V_0 e^{i\omega t} \), then the current equation becomes

\[
I \propto C_0 V_0 e^{i\omega t} + C_1 V_0^2 e^{i2\omega t} + \cdots,
\]

resulting in the primary coefficient of interest for second harmonic generation being \(C_1 \). From the equations for calculating \(C_{bd} \) and \(C_{bde} \), \(C_1 \) can be determined for varying \(V_{GS} \) (Fig. 2). The extrinsic capacitance coefficients are generally independent of \(V_{GS} \) (Eq. (8)) but still contribute to the total nonlinear capacitance, setting the minimum amount of nonlinearity in the device. The intrinsic capacitance is the variable element and tunes over a wide range of values but the transistor should be in moderate inversion to attain the maximum value of \(C_1 \) and for \(C_{bd} \) to have strongest impact on the total capacitance.

The values in Fig. 2 are calculated based upon assumed parameters derived from the measured DC characteristics. The BSS83 does not have a comprehensive Spice model which would give many of the parameters needed for the capacitance calculations. Very precise values of \(n \) in Eq. (7) are necessary for the accurate computation of \(C_{gd} \) and \(C_{bd} \), which is difficult to achieve unless the surface potential is well known. Therefore, we note that we do not expect to reproduce in the measurement the precise quantitative features of Fig. 2. Essential features, however, are that changing \(V_{GS} \) will in turn change the \(C_1 \) coefficient in the expanded \(C_{bd} \) expression, modulating the generated second harmonic.
We wish to determine the metamaterial used in the experiment. We conducted a similar sectional area of the waveguide, in this case 171.1 cm².

We record the generated sum frequency signal as a function of \(\omega_1 \) and \(V_{GS} \). Fourier process and convert to magnetic field values using Eq. (12). From the magnetic field values, we calculate \(\chi_m^{(2)} \) (Fig. 4) using the procedure developed by Rose et al. and Larouche et al. When the data in Fig. 4 are compared with previous work, we see the same qualitative behavior: for any individual value of \(V_{GS} \), the sum frequency field has a maximum value near \(2f_{resonant} \). The data from Fig. 4 also confirm that we can adjust \(V_{GS} \) to dynamically adjust the effective \(\chi_m^{(2)} \) of the metamaterial.

From Fig. 4, the experiments exhibit characteristics that support the analysis summarized in Fig. 2. First, we experimentally observe a \(V_{GS} \) threshold below which \(\chi_m^{(2)} \) and \(C_1 \) are fixed, as predicted by the analysis. Second, both the theory and experiment predict steep increases in \(\chi_m^{(2)} \) and \(C_1 \) on the order of a factor of two. As expected from not having access to precise parameter values for the calculations, there are a few quantitative differences between the theory and experiment. The theoretical analysis predicted a dramatic increase of the second-order nonlinearity when \(V_{MB} < V_{GS} < V_T \), reaching a maximum at \(V_{GS} = V_T \). In the measurements, an increase in the second-order nonlinearity was observed starting around \(V_{GS} = 0.5 \) V (which corresponds approximately to the device entering weak inversion per our assumed parameters) without ever decreasing.

The rate of change for both \(\chi_m^{(2)} \) and \(C_1 \) is different as well with the experimental measurements yielding a \(\chi_m^{(2)} \) modulation that is much more gradual than the slope of the calculated \(C_1 \).

We record the generated sum frequency signal as a function of \(\omega_1 \) and \(V_{GS} \). Fourier process and convert to magnetic field values using Eq. (12). From the magnetic field values, we calculate \(\chi_m^{(2)} \) (Fig. 4) using the procedure developed by Rose et al. and Larouche et al. When the data in Fig. 4 are compared with previous work, we see the same qualitative behavior: for any individual value of \(V_{GS} \), the sum frequency field has a maximum value near \(2f_{resonant} \). The data from Fig. 4 also confirm that we can adjust \(V_{GS} \) to dynamically adjust the effective \(\chi_m^{(2)} \) of the metamaterial.

From Fig. 4, the experiments exhibit characteristics that support the analysis summarized in Fig. 2. First, we experimentally observe a \(V_{GS} \) threshold below which \(\chi_m^{(2)} \) and \(C_1 \) are fixed, as predicted by the analysis. Second, both the theory and experiment predict steep increases in \(\chi_m^{(2)} \) and \(C_1 \) on the order of a factor of two. As expected from not having access to precise parameter values for the calculations, there are a few quantitative differences between the theory and experiment. The theoretical analysis predicted a dramatic increase of the second-order nonlinearity when \(V_{MB} < V_{GS} < V_T \), reaching a maximum at \(V_{GS} = V_T \). In the measurements, an increase in the second-order nonlinearity was observed starting around \(V_{GS} = 0.5 \) V (which corresponds approximately to the device entering weak inversion per our assumed parameters) without ever decreasing.

The rate of change for both \(\chi_m^{(2)} \) and \(C_1 \) is different as well with the experimental measurements yielding a \(\chi_m^{(2)} \) modulation that is much more gradual than the slope of the calculated \(C_1 \).
These discrepancies are likely explained by our assumption regarding the simplification of the transistor model in Fig. 1. The main assumptions needed to complete the calculations required the gate be completely isolated from the drain and source and that the device was long channel. In real devices, the extrinsic capacitances between the terminals and gate will cause coupling between the terminals and generate a small voltage on the gate. This gate voltage will in turn cause additional charge redistribution as well as bring the nonlinear components of the gate-to-bulk capacitance C_{gb} into the model. The previously mentioned short channel effects can also change the extrinsic gate to drain capacitance from a simple linear capacitance to a nonlinear capacitance in itself, which will also introduce additional nonlinearity. An additional minor difference between the $\chi_m^{(2)}$ and C_V curves refers to the maximum observed in the calculations while not being observed in the measurements. This is simply due to the fact that V_{GS} in the measurements was always below V_T ($\approx 1.15 \, V$).

We also note that the measured $\chi_m^{(2)}$ values in Fig. 4 are significantly lower than the previously reported values for varactor-base nonlinear metamaterials. There are several reasons for this. The material nonlinearity can be tuned by changing the reactive and resistive characteristics of the material nonlinearity. An additional minor difference between the $\chi_m^{(2)}$ and C_V curves refers to the maximum observed in the calculations while not being observed in the measurements. This is simply due to the fact that V_{GS} in the measurements was always below V_T ($\approx 1.15 \, V$).

In summary, this work demonstrates a metamaterial with tunable nonlinear susceptance. Metamaterials using varactor diodes, as in Ref. 30, present an effective $\chi_m^{(2)}$. However, in order to modulate the $\chi_m^{(2)}$ of the metamaterial, it is necessary to alter the characteristics of the charge distribution within the diode element. By using a transistor, we are able to change the reactive and resistive characteristics of a nonlinear metamaterial electrically utilizing the additional terminals. By biasing the device in the subthreshold region, the effective $\chi_m^{(2)}$ of a material can be tuned over a significant range. Control of the nonlinearity can increase the design space for metamaterials by introducing a way to engineer a material based upon desired nonlinear, in addition to linear, characteristics. Future work includes the expansion of the models based on Enz-Krummenacher-Vittoz (EKV) theory using harmonic balance-based simulators as well as potential applications in the development of mixers tunable mixing efficiency and components in the field of nonlinear optics.

This work was supported by a Multidisciplinary University Research Initiative from the Army Research Office (Contract No. W911NF-09-1-0539).

24I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, Opt. Express 13, 1291 (2005).
26A. Slobozhanyuk, P. Kapitanova, I. Shadrivov, P. Belov, and Y. Kivshar, JETP Lett. 95, 613 (2012).
27D. Powell, I. Shadrivov, and Y. Kivshar, Appl. Phys. Lett. 95, 084102 (2009).