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Abstract: This work investigates the gains realisable through the use of artificially structured materials, otherwise
known as metamaterials, in the wide angle impedance matching (WAIM) of waveguide-fed phased-array
antennas. The authors propose that the anisotropic properties of a metamaterial layer, when designed
appropriately, can be employed to achieve impedance matching at a wide contiguous range of phased-array
antenna transmission angles. Simulation and numerical results show that an optimised impedance match over
a broad angular range can be readily achieved using a doubly uniaxial (magnetic and electric) anisotropic
layer, an outcome not found accomplishable when an optimised isotropic dielectric layer is used. The authors
propose the possibility of using metamaterials to achieve anisotropic WAIM layer configurations, and the
authors show, using two simple uniaxial designs, that a metamaterial layer over the phased-array gives
performance characteristics similar to its homogeneous anisotropic effective medium counterpart.
1 Introduction
Since the inception of research in the area of metamaterials,
researchers have explored the various advantages that these
novel, artificially structured materials may provide [1–6].
Beginning with the first experimental works on these
materials [7, 8], it has been established that metamaterials
can indeed display properties that are difficult or impossible
to achieve in conventional materials. Combined with the
ease of design, very sophisticated devices, such as the
invisibility cloak [9], can be created.

In electromagnetic devices, in which conventional
dielectrics are used, the use of carefully designed
metamaterials can potentially improve engineering designs
thereby leading to enhanced system performance. In this
paper, we seek to evaluate the impact of metamaterials as
wide angle impedance matching (WAIM) elements in
phased-array antennas. To address reflections at the
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aperture–air interface of waveguide-fed phased-array
antennas, a matching WAIM structure (usually made up of
a stack of dielectric layers) is one method employed to
offset the encountered mismatch [10]. In order to achieve a
wide angular range of maximal transmission (or minimal
return loss) for the array, an optimisation is performed to
vary the dielectric values and thicknesses of one or more
WAIM layers until an acceptable return loss is achieved.
Depending on the antenna geometry and operating
frequency, however, it often becomes difficult to match the
antenna at all angles using the limited set of dielectric
materials available in nature. To alleviate this problem, one
might be able access a wider dielectric range as done in
[11], or better yet even utilise (if accomplishable) materials
with which one can simultaneously access anisotropic
magnetic and dielectric properties whose m or e in all
cartesian directions can be precisely engineered. By
providing several controllable variables, the latter would
increase the ease of matching waveguide-fed array antennas
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to free space at all scan angles. We propose using
metamaterials as anisotropic WAIM layers, as these
materials can be used to access and engineer anisotropic
magnetic and dielectric constitutive parameters.

We thereby extend the previously existing method of
dielectric WAIM layer optimisation to allow a wider range
of m and e, and to include anisotropic values of e and m, a
configuration physically accomplishable through the use of
metamaterials. The following sections analyse the feasibility
of anisotropic metamaterial WAIMs. Section 2 briefly
overviews the utility of phased-array antennas and
introduces the concept of active element admittance,
Section 3 discusses the general impedance matching
methodology used later in this document, Section 4
presents results that show the superior performance
achievable using anisotropic WAIMs and Section 5
demonstrates the validity of treating metamaterials placed
over phased-array antennas as anisotropic WAIM layers.

2 Phased-array antenna overview
A phased-array antenna is a periodic arrangement of antennas
that serves the purpose of generating a highly directioinal
radiation whose scan direction can be controlled by the
phase gradient applied across the array. As shown in Fig. 1,
a common phased-array configuration consists of an array of
open-ended waveguides in which each waveguide is affixed
onto openings in a large perfect electric conductor (PEC)
plane with openings having exactly the same dimensions as
the open end of the waveguide.

It is desired that the ratio of radiated (transmitted) power to
input power be maximised at all output scan angles of the
phased-array antenna; this output to input ratio, in the far
field of an infinite (or very large) array, is approximately [12, 13]

Pr(u, f)

Pi

= (1 − |G(u, f)|2)f (u) (1)

f (u) is a physical limitation that represents the reduction in
effective aperture cross section as the beam is steered to angles
away from the normal, which varies based on geometric

Figure 1 Array topology
064 IE
The Institution of Engineering and Technology 2010
considerations as cosu, ( cos u)3/2, or ( cos u)2, depending on
the azimuthal plane of scan and the mode distribution of the
antenna element [14]. The output transmitted power is
dependent on the reflection coefficient G(u) and on the
effective aperture cross section, f (u). The reduction of the
effective aperture size is a physical limitation, therefore it is
especially important to minimise G(u) over a very broad range
of angles, particularly at large angles. One aforementioned
method of minimising the return loss in waveguide-fed
phased-array systems is to utilise a combination of isotropic
planar dielectric layers placed over the array system [10].
These layers are used to optimise the matching over a band of
angles, but the performance achieved using this method,
however, is constrained by the inability to implement layers
with arbitrarily chosen constitutive parameters.

2.1 Phased-array antenna active element
admittance

The active element admittance of an infinite array is the
admittance at the aperture–air interface of a single element
at the centre of the array when all of the elements in the
array are radiating [13]. The active element admittance
includes all of the interactions because of other elements in
the array. The disparity between the active element
admittance (looking out from the aperture discontinuity of
the centre element) and the waveguide propagating mode
admittance indicates the level of impedance mismatch of
the array, which varies as a function of scan angle.

Because the phasing relationship between any two adjacent
waveguide elements changes when the scan angle is changed,
the mutually induced voltages and subsequently the active
element admittance will change when the scan angle is
varied. It is therefore necessary to design a stack of WAIM
layers that allow reflectionless transmission of the power
emanating from the array apertures.

In Section 4, we shall compute the active element
admittance for a waveguide-fed antenna array system and
prescribe the anisotropic material parameters (mx = my, mz,
ex = ey, ez, and thickness, d ) of the matching WAIM
layer. The obtained results are compared with the
impedance matching obtained when using a regular
dielectric layer (e, d ), instead of an anisotropic layer.

2.2 Calculating the active element
admittance

Before exploring the possible advantages presented through
the use of metamaterials, we briefly present the method by
which the active element admittance has heretofore been
calculated, we also present our proposed modifications that
take into account the dispersion relation of uniaxial
magnetic and dielectric anisotropic WAIM layers.

The active element admittance as a function of scan can be
computed using computational tools such as the finite
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1063–1072
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element method solver Ansoft HFSS, or the finite difference
time domain solver Microwave Studio CST. Although these
programs are precise and can handle arbitrary geometry, full
wave simulations are time consuming and not appropriate
for the rapid optimisation necessary for wide angle
matching. To save computation time, we utilise an
analytical approach, discussed hereafter, to obtain the active
element admittance as a function of scan.

Various approaches for analytically computing the active
element admittance of phased-arrays have been explored in
the literature. For large arrays, an infinite element array can
be assumed because of its simplicity and accuracy in
describing large arrays [13, 15]. All elements are thus
assumed to be exactly identical in large arrays since most
elements except the edge elements would possess similar
admittance and field characteristics when radiating [15, 16].

Several approaches have been proposed for the derivation of
the active element admittance of waveguide-fed phased-arrays
[12, 15–20]. We utilise the method proposed in [20] to solve
for the active element admittance. The method in [20] (just as
some of the other cited methods) incorporates both the
contribution of higher order waveguide modes in the
waveguide and higher order evanescent free space modes just
above the aperture discontinuity; Borgiotti [20] has been
found to be accurate in predicting phased-array antenna
performance, and it is straightforwardly implementable for
array with waveguide elements for which the Fourier
transform of the eigenmode field distributions are known.

For a given phased-array topology, the approach in [20]
represents the fields above the each aperture by a Fourier
series summation of plane wave modes with unknown
complex amplitudes in the Hilbert space; these are also
known as Floquet modes [20, 21]. These fields are
boundary matched to the summation of waveguide modes
that exist inside each waveguide element, just below the
aperture interface. The analytical representation of these
fields are shown in the Appendix.

The following set of equations show how Yin may be
calculated using the method proposed in [20]

VoYin(uo) −
∑N−1

i=0

ViY0i(uo) = 0 (2)

VkYk +
∑N−1

i=0

ViYki(uo) = 0 (3)

where

Yki(uo) =
4p2

C

∑
uopq

[j∗kr(|uopq|)jir(|uopq|)YTM(|uopq|)

− j∗kc(|uopq|)jic(|uopq|)YTE(|uopq|)] (4)
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and

uo = x̂kx + ŷky (5)

uopq = uo + pt1 + qt2 (6)

kx = ko sin u cosf (7)

ky = ko sin u sinf (8)

In the above equations, uopq represents the lattice of free space
modes over the array aperture and Y (uo) represents the active
element admittance at some scan angle uo. Vectors t1 and t2

represent the periodicity of the array lattice in the reciprocal
space, whereas the p and q scalars are indices that point to
contributions from evanescent or propagating plane waves
in space, just above the aperture. Yki is the cross
polarisation admittance between different modes in the
waveguide element, whereas Yk in (2) represents the modal
admittance (a function of frequency but not scan angle) of
waveguide mode k. Indices i and k point to contributing
waveguide modes from the fundamental propagating mode
at i ¼ 0 or k ¼ 0 to the least contributive non-propagating
mode at i ¼ 1 or k ¼ 1. The summations in (2) and (3)
are truncated at a finite N 2 1 to reflect the negligible
contribution of far away higher order modes. Observe that
when i ¼ k ¼ 0, Y00 reduces to the oversimplified case
where the influence of only one waveguide mode is being
considered, exactly analogous to (12) in [17], this is known
as the grating lobe series. The j quantity in (4) is the
Fourier transform of the field distribution of the kth or ith
mode away from cutoff in the waveguide, whereas the r

and c subscripts correspond to the radial and
circumferential components of the Fourier transform of the
waveguide mode in question.

We utilise the approach shown in (2)–(8) but also make
modifications so that the approach accurately characterises
the array in the presence of uniaxial (mx = my, mz, ex = ey,
ez) anisotropic matching layers. The incorporated
modifications are shown in the following set of equations,
and are directly derived from the Maxwell’s equations

YTE(|uopq|) = −Hx

Ey

=
kz,TE

vmomx

(9)

kz,TE =
����������������������
v2momxeoey − k2

t

mx

mz

√
(10)

YTM(|uopq|) =
Hy

Ex

= veoex

kz,TM

(11)

kz,TM =
���������������������
v2eoexmomy − k2

t

ex

ez

√
(12)
1065

& The Institution of Engineering and Technology 2010



1

&

www.ietdl.org
where

kx = ko sin(u) cosf

ky = ko sin(u) sinf

kt = |x̂kx + ŷky + pt1 + qt2|
(13)

For infinitely thick anisotropic layers placed directly above the
aperture–air discontinuity, the admittance parameters YTE

and YTM above are perfectly valid, for layers of finite
thicknesses however, a transmission line impedance
transformation equation [22] may be used to recursively
transform the YTE or YTM from the material at z ¼ 1 to
the material at the z ¼ 0 plane (see Fig. 1) of aperture
discontinuity. This shall be the equivalent effective YTE and
YTM to be used in (4).

2.3 Verification of quasi-analytical model

A MATLAB program was written to implement the active
element admittance for the waveguide-fed phased-array
antenna system here analysed. The lattice dimensions of
the array are of a typical but arbitrary antenna array
configuration and are shown in Figs. 1 and 2 (unit element
lattice: waveguide loaded with er = 2.54 dielectric opens
out of a PEC plane). Each waveguide in the array is cross-
fed to excite two orthogonal instances of the fundamental
TE11 mode (the TE11 mode configuration shown in Fig. 1
is the reference mode used for Yin calculations in this paper).

For the analytical model, 49 free space modes are included
(i.e. p ¼ q ¼ [23, 22, 21, 0, 1, 2, 3]), and the maximum
number of waveguide modes, N, included in the
summations of (2) and (3) is ten. It was found that
additional Floquet terms over 49 were negligible
contributors to Yin; the first ten waveguide modes included
are: TE11, TM01, TE21,TM11, TE01, TE31 and the cross
polarised TE11 (908 offset), TE21 (458 offset), TM11 908
offset) and TE31 (308 offset). Other higher order

Figure 2 Pictorial representation of unit lattice

a Computational domain used in HFSS simulations
b Top view of a single-element lattice
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waveguide modes beyond the first ten were found to make
negligible contributions.

jic in (4) represents the Fourier transform of the TE
polarised component (with respect to the z-direction) of
the ith TEnp mode away from the fundamental propagating
waveguide mode, whereas jir is the same for the TM
polarised component of the same mode. Accordingly, j0c

or j0r would each represent the TE and TM polarised
components of the fundamental TE11 mode. Note that the
expression for jic is printed incorrectly in [20] but is
displayed here in its corrected form

jc(t, m) = j(n−1)

�����
2/p

√������������
(x′np)2 − n2

√ a cos nm

1 − (at/xnp)2
J ′n(at) (14)

With the inclusion of multiple waveguide modes, the
admittance can be expressed as a matrix that contains
various higher order free space and waveguide mode terms.
For each angle, each of these terms is straightforwardly
obtained from (4), and then used in (2) and (3) to generate
a matrix that can be solved to compute the input
admittance Yin(u, f) [expressed as Yin(uo) in (2), also see
(22) in [20]].

For the geometry assumed in Fig. 2

kt = x̂ kx + p
2p

L

( )
+ ŷ ky +

2p

L
p
−1��

3
√ + q

2��
3

√
[ ]( )∣∣∣∣

∣∣∣∣ (15)

In Fig. 3 the accuracy of the MATLAB model with and
without higher order modes are compared to the
corresponding HFSS results. An infinite phased-array
antenna is implemented in HFSS by performing a 3D
simulation of single array element unit cell and setting
master–slave periodic boundaries on the all the walls of the

Figure 3 Effects of the inclusion of higher order waveguide
modes on the accuracy of quasi-analytical code

WAIM layer: mx ¼ my ¼ 2, mz ¼ 1, ex ¼ ey ¼ 4.2, ez ¼ 2, and
d ¼ 2 mm
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1063–1072
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region above the aperture plane. In HFSS, the Yin(f, u) (or
Gin(f, u) or S11(f, u)) is obtained by referencing it to the
aperture–air discontinuity and not the port assignment at
the base of the waveguide.

Fig. 3 shows the results for a phased-array topology with a
single layer having mx = my = 2, mz = 1, ex = ey = 4.2,
ez = 2, and thickness, d ¼ 2 mm placed directly over the
aperture face. The comparisons test the accuracy of the
MATLAB model of the phased-array antenna active
element admittance.

3 Matching of phased-array
antenna using anisotropic layers
3.1 WAIM layer optimisation
methodology

In order to obtain an ideally matched phased-array antenna
structure, the active element admittance at the waveguide
junction must equal the admittance of the propagating
mode in the waveguide, which, for all scan angles, must be
forced to fulfill

Yin(f, u) = YTE11
(16)

Because the active element admittance for an anisotropic
material layer does not result in a simple analytical
expression, an optimisation program was written to choose
the constitutive parameters that minimise the reflection
coefficient over a broad range of angles, thereby minimising
ideally

∫908

f=08

∫908

u=08

YTE11
− Yin(f, u)

YTE11
+ Yin(f, u)

∣∣∣∣∣
∣∣∣∣∣
2

du df (17)

We implement the fmincon constrained optimisation
routine in the MATLAB optimisation toolbox to minimise
the ‘area under the curve’ of the integrand in (17).
fmincon accepts a variety of inputs: it accepts the
parameterised function that needs to be optimised, the
range of design variables that give flexibility to the problem
(which in the uniaxial case are mx, mz, ex, ez and the
thickness d of the layer). A constrained optimisation
routine is used because we limit the search range for m, e
and thickness d. fmincon uses line-search, quasi-newton
and sequential programming algorithms to numerically
home in on the minimum but needs a given starting point
from which it begins its search. Since the optimisation
routine does not always arrive at the absolute minimum of
the expression in (17), 500 sets of randomly generated
starting points (i.e. mx, mz, ex, ez and d ) are used to arrive
at 500 minima. The smallest local minimum of all the 500
minima is chosen to be the absolute minimum (note that
many of the minima in the optimisation search are identical).
ET Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1063–1072
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A rudimentary pseudocode of the optimisation and
implementation code is presented

predefine constants: frequency, c, k o, k t, . . .

predefine variables: waveguidemodes,

Floquetmodes, anglerange;

get all grating lobe series ();

starting vars = random (′unif′, range, 500, . . . )

forindex = 1:500

[optimised vars, Integral value] =
fmincon(@Integral ReflCoeff AllAngles, . . . );

vars and integral = [optimised vars,

Integral value];

sort (vars and integral);

end

return vars and integral (1, :);

4 Results
4.1 Optimising with anisotropic WAIM
layer at multiple azimuthal planes

Using the optimisation methodology heretofore discussed,
we choose to optimise the phased-array antenna of Figs. 1
and 2 on all azimuthal planes. Since phased-array designers
often look at the H-, D- and E-planes [f = 08, f = 458
and f = 908, respectively (see Fig. 1)] to approximately
characterise the behaviour of a phased-array system [23],
we attempt to simultaneously optimise at all three
azimuthal planes and compare results realised when an
optimised homogeneous anisotropic layer against when an
optimised isotropic dielectric layer is used. The objective
function is

∑b=2

b=0

∑808

u=08

YTE11
− Yin(45b8, u)

YTE11
+ Yin(45b8, u)

∣∣∣∣∣
∣∣∣∣∣
2

(18)

The constitutive parameters that give an optimised
admittance for these planes were once again generated by a
MATLAB script incorporating the developments from
Sections 2 and 3. Note that the discrete summation in (18)
is as effective but not as time-intensive as its continuous
integral version in (17). The range allowed for the
homogeneous anisotropic parameters was from 0.2 to 5 for
e and m and from 1 to 5 mm for d, whereas the range for
the isotropic dielectric was from 1 to 10 for er and from 1
to 10 mm for d.

The results of the optimisation for the anisotropic layer
and that of the isotropic dielectric layer are shown,
respectively, in Figs. 4–6. For the homogeneous
anisotropic layer, the optimised WAIM layer parameters
are found to be mx = my = 1.48, mz = 1.97,
1067
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ex = ey = 2.34, ez = 0.74, d ¼ 3.1 mm, while, for
comparison, the optimised WAIM parameters using an
isotropic dielectric are er = 2 and d ¼ 2 mm. Using the
aniotropic layer, a near-perfect impedance matching is
obtained at all the shown azimuthal planes. It is evident
from a comparison of Figs. 4–6 that the use of anisotropic
layers (which we show to be accomplishable using
metamaterials, see Section 5) as opposed to isotropic
dielectrics can provide significantly improved transmittance
characteristics for a phased-array antenna system. It is
important to note that the isotropic dielectrics used for
Figs. 4–6 results are best case scenarios that assume that
the designer has access to dielectrics with arbitrary er ,

Figure 4 E-plane (f ¼ 908) optimised transmittance for
single layer WAIM

Anisotropic: mx ¼ my ¼ 1.48, mz ¼ 1.97, ex ¼ ey ¼ 2.34, ez ¼
0.74, d ¼ 3.1 mm. Isotropic: er ¼ 2 and d ¼ 2 mm

Figure 5 D-plane (f ¼ 458) optimised transmittance for
single layer WAIM

Anisotropic: mx ¼ my ¼ 1.48, mz ¼ 1.97, ex ¼ ey ¼ 2.34, ez ¼
0.74, d ¼ 3.1 mm. Isotropic: er ¼ 2 and d ¼ 2 mm
068 IE
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which in actuality is not true. This suggests that the use of
anisotropic material layers, if accomplishable, could be
promising for the impedance matching of phased-array
antennas.

To evaluate the sensitivity of the array transmittance to
deviations in anisotropic WAIM values, in Fig. 7 we
present results for the performance of the optimised
anisotropic WAIM of Figs. 4–6 when mx(=my) and
ex(= ey) deviate by ten percent from 1.48 and 2.34 to 1.63
and 2.1. The results of Fig. 7 show that the strongly
transmissive performance of the anisotropic WAIM is
nonetheless retained even when a 10% variation is
introduced to some of its constitutive parameters.

Figure 6 H-Plane (f ¼ 08) optimised transmittance for
single layer WAIM

Anisotropic: mx ¼ my ¼ 1.48, mz ¼ 1.97, ex ¼ ey ¼ 2.34, ez ¼
0.74, t ¼ 3.1 mm. Isotropic: er ¼ 2 and d ¼ 2 mm

Figure 7 Performance of the anisotropic WAIM of Figs. 4–6
when mx (¼my) and ex (¼ey) deviate both by 10% from 1.48
and 2.34 to 1.63 and 2.1
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1063–1072
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5 Simulation of electric L-C (ELC)
metamaterial layer over phased-
array antenna
In this section, we aim to demonstrate that a metamaterial
layer can be used as a bonafide anisotropic WAIM layer.
The examples presented in this section aim to verify the
possibility of using metamaterials as anisotropic layers over
the aperture plane of a phased-array antenna system.

5.1 Example 1

To verify the practicality of using an effective medium
description to describe the behaviour of resonant structure-
based metamaterials over a phased-array aperture junction,
we simulate an ELC resonator metamaterial layer designed
(a detailed description of ELC resonators can be found in
[24]) to have effective medium parameters of mr = 1,
ex = ey = 2.58, ez = 1 and d ¼ 2.1 mm at the array
operating frequency of 15.25 GHz. (Superficially ELC
structures may bear resemblance to the four-legged FSS
element [25], but conceptually they work in a different
regime: the four-legged FSS element is used in a manner
that puts it more in the bandgap of the dispersion diagram
as opposed to the ELC, which is used at much longer
wavelengths relative to the unit cell size, such that
homogenisation applies.)

We thereafter compare these results with those from a
simulation of an equivalently defined (in HFSS)
homogeneous anisotropic material whose permeability and
permittivity parameters are the same as that of the ELC
metamaterial layer at 15.25 GHz.

Fig. 8 shows the topology of the metamaterial WAIM
setup simulated in HFSS (a phased-array with a square

Figure 8 Topology of phased-array unit lattice with ELC-
based metamaterial layer
ET Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1063–107
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lattice was used here (and in Example 2) to
computationally accommodate the square-shaped ELCs;
the lattice parameter of the phased-array square lattice is
10.5 mm), and also shows the constitutive parameter
retrieval results for the ex and ey direction of the
metamaterial. The retrieved results were derived from the
scattering parameter matrix values using the method
outlined in [26]. Although shaded differently in Fig. 8, the
ELC layer is immersed in air (no other substrate) and was
placed at a distance d/2 above the aperture; the shaded
region in which the metamaterial layer is immersed has a
total thickness, d, and is used in the parameter retrieval
shown in Fig. 8. The metal trace on the ELC unit cell of
Fig. 8 is of PEC material.

A comparison of the full-wave simulation of the array
topology in Fig. 8 and that of an equivalently assigned
homogeneous anisotropic material is shown in Fig. 9.

5.2 Example 2

In this second example, an ELC-based metamaterial layer
with parameters mr = 1, ex = ey = 1.9, ez = 1 and d ¼
2.1 mm placed 2.1 mm above the array is simulated and its
results are compared to that of an equivalently assigned
homogeneous anisotropic material. Fig. 10 shows the setup
and unit cell characteristics of the ELC layer used herein.

A comparison of the HFSS simulation results for the ELC
metamaterial layer and the equivalently assigned bulk
anisotropic material is shown in Fig. 11. Note that the
ELC array in this example is also made out of PEC and
immersed completely in vacuum.

Figs. 9 and 11 show exact agreements between
results obtained from the ELC WAIM simulations and

Figure 9 Example 1: Comparisons of 1 2 |G|2 for
metamaterial layer against equivalent homogeneous
anisotropic medium material (mr ¼ 1, ex ¼ ey ¼ 2.58, ez ¼

1 and d ¼ 2.1 mm) over array with square lattice
2 1069
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Figure 10 Phased-array unit lattice with ELC-based metamaterial layer (with air gap over array)
0

that of the equivalent homogeneous anisotropic simulations.
From the (1 − |G|2) agreements, it can be reasonably
inferred that an effective medium model (homogenisation
of the metamaterial array) sufficiently describes the
behaviour of a metamaterial layer over the phased-array
used here.

Figure 11 Example 2: Comparisons of 1 2 |G|2 for
metamaterial layer against equivalent homogeneous
anisotropic medium material (mr ¼ 1, e x ¼ e y ¼ 1.9,
ez ¼ 1, and d ¼ 2.1 mm) over array with square lattice
70 IE
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6 Bandwidth
Since bandwidth is a critical figure of merit in most microwave
systems, it is important to consider the implications of
metamaterial WAIMs on the bandwidth of phased-array
antennas. Depending on the frequency regime within which a
metamaterial is being used, its permittivity or permeabilty
may change rapidly, especially at frequencies close to the
metamaterial particle resonance. For the resonant ELC
particles shown in Figs. 8 and 10, the resonance frequency is
located at 34 and 36 GHz, respectively, and because of the
large separation of the resonance frequency from the
15.25 GHz antenna operation frequency, we can operate in a
less frequency dispersive and less lossy regime of the
metamaterial. For instance, within the often used narrowband
application explored herein (500 MHz surrounding the
15.25 GHz frequency), the permittivity ex = ey varies only
from 1.88 to 1.89 for the ELC in Example 1 and from 2.56
to 2.59 for the ELC in Example 2, thus exhibiting minimal
dispersion within the bandwidth of the antenna.

When very large or very small constitutive parameter values
are needed in a metamaterial however, it might be necessary
to operate closer to the resonance frequency of the
metamaterial, in which case high losses and strong
frequency dispersion will be encountered. Based on these
considerations, it would be important to optimise the
WAIM parameters such that the anisotropic constitutive
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 8, pp. 1063–1072
doi: 10.1049/iet-map.2009.0543
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parameters needed are neither very high nor near zero nor
negative, as in these regimes strong frequency dispersion
and large losses will be encountered.

7 Conclusion
We have suggested the use of anisotropic layers,
implementable using metamaterials, to achieve wide angle
impedance matching for phased-array antennas. In order to
successfully achieve WAIM via this method, it would be
essential to be able to reliably design metamaterial layers
with at least four degrees of freedom (uniaxial m, uniaxial
e, variable thickness). For a reliable and predictable design
to be achieved, further work will need to be done so as to
develop metamaterial structures with minimised loss, cross-
coupling and bi-anisotropic effects [27]. Additionally, it
would be important to utilise metamaterial structures that
can be feasible and realisable from the fabrication
standpoint. Although the aforementioned factors need to
be taken into account during the metamaterial WAIM
implementation process, this paper contributes to the
foundational work needed to characterise arrays matched
with anisotropic materials, and then presents numerical
data that validates the prospects of using metamaterials to
achieve anisotropic WAIMs.
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‘Determination of effective permittivity and permeability
of metamaterials from reflection and transmission
coefficients’, Phys. Rev. B, 2002, 65, (19), article id 195104
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10 Appendix
We can express the tangential fields at the array surface in two
ways: (i) as consisting of a summation of the field distribution
of an infinitum of waveguide modes, and (ii) as consisting of
a summation of the field distribution of free space modes
excited at the aperture interface. We will express these
summation symbolically and equate them in order to
enforce the tangential electric and magnetic field boundary
conditions at the array surface (i.e. the z ¼ 0 plane).

Using a bidimensional Floquet expansion (2D counterpart
of Bloch’s theorem), the tangential waveguide electric fields
at z = 0+ (i.e. just above the the z ¼ 0 plane) can be
represented as an excited spectrum of spatial harmonics
072 IE
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weighted by vector coefficients A(uopq)

Et(x) =
∑+1

p=−1

∑+1

q=−1

A(uopq)e−juopq ·x (19)

Representing the field distribution of waveguide mode i as ei,
the tangential electric fields excited at z = 0− can be written
as a sum of an infinitum of waveguide field distributions
weighted by mode amplitudes Vi

Et(x) =
∑1

i=0

Viei(x) (20)

The indices of waveguide modes start from i ¼ 0 (the
fundamental lone propagating waveguide mode), through
i ¼ 1 (the first higher order mode), to i ¼ 1 (the higher
order mode at infinity). To enforce the boundary condition
on the tangential electric fields at the array surface,
expression (19) for z = 0+ must equal (20) for z = 0−. For
a unit waveguide element, this takes the form

Et(x) =
∑1

i=0

Viei(x) =
∑+1

p=−1

∑+1

q=−1

A(uopq)e−juopq ·x (21)

As shown in (22), the same can be done for the tangential
magnetic fields. For the sake of notational brevity, we refer
to the active element admittance as Yin instead of Yin(u, f).

ẑ × YinV0eo(x) −
∑1

i=1

YiViei

[ ]
=

∑+1

p=−1

∑+1

q=−1

B(uopq)e−juopq ·x

(22)

The active element admittance Yin is derived after expressing
A(uopq) and B(uopq) in terms of the combination of plane
wave admittances and a summation of the Fourier
transforms of several waveguide modes. Reference [20]
provides further detail.
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