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[1] We present a flexible and robust direct reconstruction method for magnetospheric
radio tomography. We show that for a combined reconstruction of plasma density Ne and
magnetic field B, the direct reconstruction method performs as well as popular iterative
methods such as algebraic reconstruction technique (ART) and multiplicative algebraic
reconstruction technique (MART) for large number of satellites, but it performs
significantly better when the number of satellites is small. The main advantages of this
method are that extra information, such as in situ measurements, can be easily and flexibly
incorporated into the reconstruction; it is relatively robust in the presence of noise; and it is
less sensitive than other methods to numerical reconstruction parameters like assumed grid
size. We demonstrate the good performance of this method in reconstructing electron
density and magnetic field using constellations of relatively few satellites (11 and fewer)
in a single orbit in a variety of magnetospheric regions. Although this method is relatively
robust to noisy measurements, local measurements can significantly increase the
reconstruction accuracy.
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1. Introduction

[2] Radio tomography was introduced by Austen et al.
[1988] and has been successfully used over the past
decades for the characterization of ionospheric structure
by integrated line-of-sight measurements [Andreeva et
al., 1990; Kunitsyn and Tereshchenko, 1992; Fougere,
1995; Walker et al., 1996; Sutton and Na, 1996; Kunitsyn
et al., 1997; Kamalabadi et al., 1999; Andreeva et al.,
2001]. Various reconstruction techniques [Fougere,
1995; Nygren et al., 1996; Sutton and Na, 1996;
Fehmers et al., 1998] can generate ionospheric electron
density images from a series of line integrals, the total
electron content (TEC). Experimental implementations
of these reconstruction techniques have been carried out
since the first experimental tomography image was
published [Andreeva et al., 1990; Pryse and Kersley,
1992; Pryse, 2003]. Literature reviews on the develop-
ment of tomographic methods for reconstructing the
structure of ionosphere electron density, as well as their
experimental implementations are well summarized in
the work of Pryse [2003], Leitinger [1999], and Kunitsyn
and Tereshchenko [2003]. Radio tomography has been

recently shown to be a promising new technique for a
large scale remote sensing of Earth’s magnetosphere
[Kunitsyn et al., 1997; Ergun et al., 2000; Ganguly et
al., 2000]. The ability to accurately image both electron
density and magnetic field on a large scale from the
simultaneous measurements of group delay (or phase
difference) and Faraday rotation of two coherent radio
signals would be a major advance for magnetospheric
science to address many currently unanswered funda-
mental questions [Ergun et al., 2000; Cummer et al.,
2001].
[3] Unlike traditional computer tomographic problems

widely used in medical applications, where transform-
based reconstruction techniques are popular [Kak and
Slaney, 2001], most ionosphere and magnetosphere
tomographic methods are based on ray approximation.
The main reason is that in ionospheric or magnetospheric
tomography, we usually do not have the freedom to
choose measurement ray paths crossing the region of
interest. Ionospheric and magnetospheric tomography
typically solves the ill-conditioned inverse problem by
a direct or iterative inversion of the ray projection
matrices. In addition to the incomplete ray geometry,
background noise and measurement noise are inevitably
attached to the observed phase difference and Faraday
rotation. Therefore radio tomography is more ill-posed
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compared to the widely known computer tomography in
medical applications.
[4] Two distinct forms have been proposed for

imaging the magnetosphere with radio tomography
[Ergun et al., 2000; Ganguly et al., 2000]. One is to
image the electron density Ne from the TEC measure-
ments from either the phase difference or the group
delay of two radio signals [Ergun et al., 2000]. It was
shown that 16 satellites placed in 2 polar orbits can
give a good reconstruction of Ne. Fewer satellites,
however, may result in an incorrect reconstruction.
The other is a combined reconstruction of the electron
density Ne and the magnetic field B from TEC and
Faraday rotation measurements [Ganguly et al., 2000]. A
detailed reconstruction algorithm based on ART-type
(Algebraic Reconstruction Technique) iterative methods
is introduced [Ganguly et al., 2000] and results from
combined TEC and Faraday rotation measurements
using 18 satellites in 2 orbits are shown to produce
good reconstructions of magnetospheric parameters
when tested in model problems with good spatial
coverage of the probed region.
[5] Although simulations have demonstrated the

applicability of radio tomography in the magnetosphere,
difficulties may occur if fewer satellites are used (which
may be a practical constraint on the technique). Impor-
tant research goals include finding image reconstruction
techniques that work well and robustly with fewer
satellites and that can incorporate additional information
(from other measurements or from models) flexibly into
the reconstruction. In conventional ART-type iterative
methods, other measurements may be enforced as con-
straints in every iteration; the methods are, however,
either not able to incorporate in situ measurements or can
do so only in a too local or too stiff fashion.
[6] In this paper, our primary goal is to develop and

demonstrate a robust reconstruction algorithm that per-
forms well over a wide range of the number of path-
integrated measurements and that is sufficiently flexible
to incorporate into the reconstruction many classes of
additional information. Under realistic circumstances we
anticipate a reconstruction method that trades off the
path-integrated TEC and Faraday rotation measure-
ments, any additional measurements (for example, in
situ measurements), and the smoothness of the recon-
structed images such that they degrade gracefully when
the number of satellites becomes smaller. Our approach
is to formulate the ill-conditioned inverse problem into a
constrained and weighted least squares minimization
problem and directly solve the discretized inverse prob-
lem. The weighting scheme trades off all valuable
factors to improve robustness of the reconstruction
algorithm. Numerical examples show that the regular-
ized direct method performs as good as popular iterative
methods with large number of satellites but it performs

significantly better with few satellites. We also demon-
strate that extra information such as in situ measure-
ments can be easily incorporated into the reconstruction
process and the direct method is robust within some
reasonable range of mesh grid size and measurement
noise.

2. Magnetospheric Radio Tomography

[7] Tomographic imaging requires reconstruction of an
image in the probed region from an ensemble of path-
integrated projections measured at different angles or
along different ray paths. Mathematically, reconstructing
images from measurements within or around the probing
region belongs to the class of so-called inverse problems,
in which the information of interest, such as the distri-
bution of electron density is not directly available.
Instead, what is available is certain measurements of a
transformation or a projection of this information. In
practice, however, these measurements are both an
incomplete sampling of information and corrupted by
noise. This makes most inverse problems ill-posed and a
direct inversion not possible.
[8] Two major classes of tomographic reconstruction

techniques widely used in medical or geophysical appli-
cations are the transform-based methods [Kak and
Slaney, 2001], and the algebraic methods formulated
either statistically [Andrews and Hunt, 1977; Nygren et
al., 1996] or deterministically [Frey et al., 1998; Kak and
Slaney, 2001]. The transform-based methods are widely
used for medical applications due to their accuracy and
speed of implementation. However, these methods
require the measurement of a large number of projec-
tions, which is not feasible for radio tomographic
imaging in space physics, where only few satellites are
available for the measurement of TEC and Faraday
rotation. TEC is a line integration of the electron density
along each measurement ray path, and Faraday rotation
angle is the integral of the product of electron density
and the magnetic field projected onto the measurement
ray paths. The statistical formulations of the algebraic
methods such as the Baeysian methods lead to the
Maximum A Posteriori (MAP) solutions. Although the
popular Maximum Likelihood (ML) method has been
widely used for iteratively reconstructing the original
distribution in emission tomography [Shepp and Vardi,
1982; Sheng and Liu, 2004], simulations indicate that it
does not perform well for magnetospheric imaging [Frey
et al., 1998]. The deterministic formulations of the
algebraic methods solve for an array of unknowns either
directly or iteratively by setting up algebraic equations
for the unknowns in terms of the measured path-
integrated projection data. They are by far the most
commonly used method for radio tomography and are
the focus of this paper.
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[9] An integral v of the unknown distribution u along
lines l between observation positions within a probing
region is given as

v ¼
Z s¼l

s¼0

u sð Þds; ð1Þ

with s the distance along the integration path. Computer
tomography is then used to determine the distribution
of u from a set of line integral measurements v. In
practice, for a 2-D image reconstruction, we discretize
the probing region into small pixels, with the value in
each pixel representing the mean of the unknown
distribution u. A line integral (1) projects the unknown
distribution x, which is a discrete version of u, onto a
subspace spanned by the columns of a projection matrix
A, to obtain the physical quantity y that can be
measured. A discrete version of the projection can thus
be written as

y ¼ Ax: ð2Þ

The vector x is a finite representation of the unknown
distribution at certain discrete points in the probing
region. Each component of x is the level of activity or
density in a 2-D pixel for a given discretization of the
region. Each component of y represents the number of
measurements obtained at a given location of the
imaging device. The matrix A, which is a discrete
version of the line integral in equation (1), has a
dimension of m by n, where m is the total number of
measurements and n is the number of discrete pixels. In
a hypothetical configuration for magnetospheric radio
tomography, we generally have m � n. An inversion
algorithm for magnetospheric radio tomography must
properly transform underdetermined, unevenly distrib-
uted TEC measurements and Faraday rotation angles
into images of the magnetospheric structures.

2.1. Direct Method With Regularization

[10] In general, A is very ill-conditioned and non-
invertible, which implies that equation (2) can only be
solved in the least square sense. For a unique solution of
the underdetermined inverse problem, classical recon-
struction methods such as the minimum norm least
squares solution or the maximum entropy choose
solution vector x with minimum norm or with maximum
entropy [Andrews and Hunt, 1977]. The minimum norm
least squares solution amounts to solving the optimiza-
tion problem under the constraint

minimize : r xð Þ k ATy ¼ ATAx
� �

; ð3Þ

where r(x) is the norm of x or any other criteria of
constraint leading to a unique solution. Such solutions
through the principle component analysis, however,

could be unstable in practice [Kamalabadi et al.,
1999]. A slight modification of equation (3) by

minimize : k Ax� y k2 þlr xð Þ
� �

ð4Þ

will provide simultaneously uniqueness and stability.
The formulation in equation (3) is a constrained least
squares minimization, whereas the formulation in
equation (4) is the minimization of a weighted sum
containing a least squares term and a side constraint. The
maximum entropy solution is therefore obtained by

minimize : k Ax� y k2 þ l
Xn
i¼1

xi ln xið Þ
( )

: ð5Þ

[11] For a discrete line integral with specifically
designed geometry for measurement, matrix ATA in
equation (3) is degenerate, with a nontrivial null space.
However, if we add any multiple l times a nondegene-
rate quadratic form k Hx k2, which is a finite difference
discrete version of the regularizer r(x) in equation (4),
then minimization of

& xð Þ ¼k Ax� y k2 þ l k Hx k2

leads to a unique and stable solution for x. Other
discretization schemes such as finite elements, wavelets
and Fourier series may also be used. Careful selection of
the regularizer or stabilizer r(x) in equation (4) is the
challenge for a solution that meets all physical and
mathematical requirements.

2.2. Robust Reconstruction With
Other Observations

[12] We now formulate the ill-conditioned inverse
problem into a constrained and weighted least squares
minimization problem by incorporating any auxiliary
observations expressed as z = Px, where the projection
matrix P can be easily calculated from known ray
geometry. For instance, based on specific local measure-
ments, P is simply a sparse, rectangular permutation
matrix full of mostly zeros, but with a few ones of its
elements for the case of in situ measurements. Let Sy and
Sz be the noise covariance matrices for the line-of-sight
measurements y and auxiliary measurements z respec-
tively, or simply set Sy and Sz the identity matrix if the
noise covariance information is unknown. We then solve
the inverse problem

minimize : kAx�yk2S�1
y
þ l1 kPx� z k2S�1

z
þl2 kHxk2

ð6Þ
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by taking the derivative of equation (6) with respect to
unknown x, the solution is obtained as

x ¼ ATS�1
y Aþ l1P

TS�1
z P þ l2H

TH
� ��1

� ATS�1
y yþ l1P

TS�1
z z

� �
: ð7Þ

[13] Each term in equation (6) represents respectively
contributions to the reconstruction from the path-
integrated measurements, the in situ measurements,
the smoothing interpolation and regularization of the
unknowns. For instance, increasing or decreasing l1 or
l2 in equation (6) automatically adjusts the relative
weight of in situ measurements and global smoothness
respectively, such that a good solution that trades off the
path-integrated measurements, the auxiliary observations,
and the global smoothness is easily achieved. Each term
contributes to the reconstruction in such a flexible way
that by minimizing the functional we establish efficiency
and accuracy of the direct reconstruction.
[14] A key advantage of this approach is that a wide

variety of information can be included and easily con-
trolled. The end result is a reconstruction that agrees
optimally with a weighted combination of all the mea-
surements and is maximally smooth in some sense.
The noise covariance terms automatically decrease the
weight of known noisy measurements since in reality the
measurements are likely uncorrelated, especially for
magnetospheric tomography with widely separated sat-
ellites. For instance, if noise in one of the path-integrated
measurements is relatively big, the weight of that noise
measurement is automatically suppressed by an increase
of the corresponding diagonal term in the noise covari-
ance matrix without affecting other information in the
reconstruction. Therefore the individual path-integrated
measurements can be weighted differently, as would be
appropriate in the case of a spatially varying noise
environment expected in the magnetosphere. Similarly,
the influence of the path-integrated measurements rela-
tive to any in situ measurement can be controlled to
reflect the quality and certainty of these measurements.
[15] For any prior known statistical models of the

probed magnetospheric region, a statistical regularization
term l3 k x k2

S�1
mod

can be easily added to equation (6), with

Smod the covariance matrix of the statistical model. This
statistical regularization produces fields that are statisti-
cally similar to model fields. This is a very effective way
of including existing magnetospheric knowledge without
forcing the solution toward a specific magnetospheric
feature, which would occur if a model magnetosphere
were used as an initial guess in ART-type iterative
methods. The incorporation of a statistical regularization
to the direct reconstruction will be investigated in future
work.

[16] A similar model-independent direct method has
been introduced for ionospheric tomography based on
prior knowledge of ionosphere electron density distribu-
tion [Fehmers et al., 1998]. A three quadratic term
regularization is used by Fehmers et al. [1998] that
includes terms that specifically model statistical informa-
tion of the electron density distribution. For the more ill-
conditioned magnetosphere tomographic problem, the
regularization in our paper, however, is proposed to
simultaneously reconstruct the electron density and the
magnetic field of Earth’s magnetosphere. Therefore a
finite difference approximation of the more general
Laplacian operator is employed to impose global
smoothness of the solution, along with the regularization
term that incorporates in situ measurements, which are
shown in Section 3 to significantly improve quality of
the direct reconstruction.
[17] With noisy data, the selection of l1 and l2 is

crucial to a successful reconstruction. In general l2
should be large enough to enforce stronger smoothness
to the solution compared to the noiseless case. However, a
too largel2 suppresses sharpness of the solution. A simple
first trial for l1 and l2 is suggested by balancing the order
of magnitude of various terms in equation (6) and used in
this paper as follows [Press et al., 1992, p. 802]

l1 ¼
trace ATS�1

y A
� �

trace PTS�1
z P

	 
 ; l2 ¼
trace ATS�1

y A
� �

trace HTH
	 
 : ð8Þ

[18] Proper selection of the deterministic regularizer H
in equation (6) is crucial to accurate tomographic image
reconstructions. Although there are many different forms
of regularization, an optimal regularizer that agrees well
with the prior knowledge of electron density and
magnetic field distribution is problem dependent. The
l2 norm quadratic energy regularizer generally enforces
smoothness but smears out sharpness on the solution.
The l1 norm edge-preserving regularizer enforces more
sharpness on the solution [Kamalabadi et al., 2002]. The
principal solution from a singular value decomposition is
a zeroth-order regularization, in which a minimum norm
of the solution vector is selected.
[19] A popular two-dimensional five-point finite dif-

ference approximation of the second order Laplacian
operator [Press et al., 1992; Kaup, 1999], which gives
the regularization matrix

H ¼

. . . . . . . . . . . . . . .

. . . . . . �1 . . . . . .

. . . �1 4 �1 . . .

. . . . . . �1 . . . . . .

. . . . . . . . . . . . . . .

266664
377775;

is used throughout this work since we find that the
Laplacian regularizer performs well in a variety of
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conditions. The H matrix is modified appropriately near
the boundaries.

2.3. Algorithm Validation

[20] A simple test problem is used to validate the
proposed method and to compare with iterative methods
ART and MART that have been applied to magneto-
spheric radio tomography and widely used to ionospheric
radio tomography. The original image and its line-of-
sight paths are shown in Figures 1 and 2. The ART is
implemented with the exact formulation by Kak and
Slaney [2001, p. 283] and the MART is implemented
with the exact formulation by Ganguly et al. [2000]. The
noise covariance matrix Sy is set to be the identity matrix
in the direct method.
[21] Figure 3 shows clearly the mean square errors

committed by the direct method with regularization are
much smaller than that committed by the iterative
methods such as ART and MART, especially for a small
number of satellites. Unlike the iterative methods, the
direct method with regularization is less sensitive to the
number of line integral measurements. The better per-
formance mainly attributes to the smoothing term in

equation (6), which accordingly fills the gaps among
the line integral measurements of the unknowns such that
an optimal solution with global smoothness and good
agreement with the line integral measurements, as well as
the in situ measurements is achieved. The good perfor-
mance is also partly due to the background image being
smooth. Figure 3 shows theoretically the convergence of
various reconstruction methods. In practice, however, we
do not have the freedom to see the convergence of any
reconstruction methods due to the constraint of available
satellites.
[22] Recent studies in ionospheric radio tomography

with ART-type iterative methods have shown that a
discretization of the line integral of electron density with
piecewise-planar approximation performs better than
the maybe too-stiff piecewise-constant approximation
[Andreeva et al., 2001]. In our proposed direct
reconstruction method, smoothness is imposed in the
deterministic regularization term with a finite difference
approximation of the second-order Laplacian operator in
the reconstruction. The piecewise-constant approxima-
tion is, therefore, combined with the finite difference
approximation of the second-order Laplacian operator

Figure 1. Image of a Gaussian function used in the test problem. See color version of this figure
in the HTML.
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for magnetospheric tomography. In the regularized
direct reconstruction, the discretized Laplacian operator
enforcing global smoothness of the solution significantly
improves the stiff behavior of the piecewise-constant
approximation. This is one primary advantage of our
direct reconstruction method over the ART-type iterative
methods, which either not able to incorporate global
smoothness or can do so only in a too local or too stiff
fashion. Moreover, the piecewise-constant approxima-
tion is simpler and much easier to implement. It provides
an easier way to enforce a prior knowledge on the
positiveness of the solution, while higher order approx-
imations could be troublesome.
[23] Themesh grid size used for reconstruction can have

a significant impact on the reconstruction error [Frey et
al., 1998]. Figure 4 shows clearly a significant increase
of the reconstruction error committed by the iterative
methods when mesh grid size becomes small. This is due
to the fact that for a fixed number of satellites, when the
discrete mesh becomes finer, there are fewer measure-
ment rays pass across each grid cell. Thanks to the
smoothing interpolation term in equation (6) and the
trade-off strategy, the direct method with regularization,

is relatively insensitive to mesh grid size and thus more
robust compared to the iterative methods.

3. Magnetospheric Image Reconstruction

[24] Magnetospheric plasma density Ne and the
magnetic field B are two primary physical parameters
of Earth’s magnetosphere. In situ observations of these
two parameters have been the primary means in the past
several decades for studying basic magnetospheric
structures and dynamics. However, valuable information
gathered in local regions does not reflect large-scale
nature of magnetospheric processes, how small-scale
processes couple with each other over large distances, or
sequence of events in large-scale processes. Therefore
many open questions on the global nature of magneto-
spheric processes cannot be answered with current data
[Ergun et al., 2000]. A global-scale observation that
provides simultaneous measurements of plasma param-
eters Ne and B over an extended region of magneto-
sphere would answer many fundamental scientific
questions.

Figure 2. Line-integration paths used in the test problem.
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[25] Recent experiments [Cummer et al., 2001] success-
fully measured the Faraday rotation on a magnetospheric
transmission, experimentally validating some of the basic
magnetospheric radio tomography concepts. In this
section, we demonstrate performance of the proposed
tomographic method for realistic magnetospheric radio
tomography with relatively few satellites using results
from magnetohydrodynamic (MHD) simulations.

3.1. Phase Difference and Faraday Rotation

[26] To measure path integrated Ne, each satellite
transmits coherently phased pairs of discrete radio
frequency signals to be received by all other satellites.
Since the refractive index of the medium with a plasma
frequency wp is

n wð Þ ¼ c

up
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

w2
p

w2

s
; ð9Þ

where w is the wave circular frequency and wp
2 =

Nee
2

�0me

,

the phase velocity of an electromagnetic wave in a

plasma with w 	 wp is thus approximated by truncating
the higher order term in the Taylor expansion

up ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
w2
p

w2

s 
 c 1þ
w2
p

2w2

 !
: ð10Þ

The expected phase difference (Df) at a fixed time
between two signals with frequencies f1 and f2 with
respect to f1 is given as

Df ¼ f1

f2
f2 � f1 ¼

2pf1
c

� �Z 1

0

n f2ð Þ � n f1ð Þð Þds;

ð11Þ

where e, me are electron charge and mass, �0 is free space
permittivity, c is the speed of light, and Ne is the plasma
density in probed region. It is showed that the group
delay and differential phase measurements between two
signals yield an accurate reconstruction of Ne with a
moderate number of satellites placed in two orbits
[Ergun et al., 2000].
[27] Faraday rotation is the rotation of polarization of

a linearly polarized wave as it travels through an aniso-

Figure 3. Comparison of reconstruction errors against total number of satellites.
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tropic medium like magnetospheric plasma. In cold-
plasma approximation, the change in Faraday rotation
angle F along the radio wave propagation path per unit
length s can be approximated via the Quasi-Longitudinal
(QL) VHF approximation, where the signal frequency f
is higher than both the electron gyrofrequency and the
plasma frequency and the propagation is not too close to
90�, when the propagation direction is perpendicular to
the magnetic field B. Under these conditions,

dF

ds
¼ � k

f 2

� �
NeB cos q; ð12Þ

and thus the Faraday rotation angle of radio signals with
two different frequencies can be written as

DF ¼ �k
1

f 21
� 1

f 22

� �Z s¼l

s¼0

NeB cos qds; ð13Þ

where k =
e3

8p2�0cm2
e

= 2.36� 104 m2 T�1 s�2 is a constant

factor, and B is the magnitude of the magnetic field B.
[28] The phase difference and group delay provide

integrated measurements of electron density only, while
the Faraday rotation provides the product of magnetic

field B and electron density Ne and is thus sensitive to
changes in both quantities. Therefore a combination of
Faraday rotation and group delay or phase difference
measurements enables independent measurement of the
magnetic field in the plane of propagation paths and the
plasma density. Recent work [Ganguly et al., 2000]
showed how interspacecraft Faraday rotation measure-
ments combined with phase different measurements
enable concurrent tomographic reconstructions of non-
local magnetospheric plasma density Ne and in-plane
magnetic field B through iterative methods MART and
IART under relatively ideal situations where 18 satellites
are placed in 2 orbits.
[29] If the region of interest is divided into n discrete

cells, then the phase difference measured through ray i,
shown in equation (11) directly proportional to the TEC,
can be expressed in a discrete form as follows

Ti ¼ tf1
1

f 21
� 1

f 22

� �Xn
j¼1

LijNj; ð14Þ

for i = 1, 2, .., m, where Lij is the length of ray i in cell j,

and t =
e2

4p�0cme

= 4.211 � 10�7 C2 s F�1 kg�1 is a

constant factor. The Faraday rotation angle for ray i in

Figure 4. Comparison of reconstruction errors against mesh grid with 16 satellites.
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equation (13) can be estimated with a discrete sum as
follows

DFi ¼ �k
1

f 21
� 1

f 22

� �Xn
j¼1

Lij ui � Bj

	 

Nj; ð15Þ

for i = 1, 2, .., m, where ui is the radio wave propagation
unit vector for ray i, Bj and Nj are the magnetic field and
electron density in cell j respectively, and m is the total
number of rays or measurements. In matrix form,
equation (14) can be written as

Tm�1 ¼ tLm�nNn�1; ð16Þ

where t = tf1
1

f 21
� 1

f 22

� �
and equation (15) can be written

as

�Fi ¼� k
1

f 21
� 1

f 22

� �
Li;1 Li;2 . . . Li;n
� �

�

N1 ui;1B1;1 þ ui;2B1;2

	 

N2 ui;1B2;1 þ ui;2B2;2

	 

. . .

Nn ui;1Bn;1 þ ui;2Bn;2

	 

8>>><>>>:

9>>>=>>>; ð17Þ

To further express

�F ¼

�F1

�F2

. . .
�Fm

8>>>><>>>>:

9>>>>=>>>>;
into a matrix form that facilities a vector field
reconstruction, we simply augment the matrix size on
the right-hand side of equation (17) to obtain a new
projection matrix for all vector components, DF is thus
written as

�F ¼� k
1

f 21
� 1

f 22

� �

�

L1;1u1;1 L1;1u1;2 . . . L1;nu1;1 L1;nu1;2

L2;1u2;1 L2;1u2;2 . . . L2;nu2;1 L2;nu2;2

L3;1u3;1 L3;1u3;2 . . . L3;nu3;1 L3;nu3;2

. . . . . . . . . . . . . . .

Lm;1um;1 Lm;1um;2 . . . Lm;num;1 Lm;num;2

26666664

37777775

�

N1B1;1

N1B1;2

N2B2;1

N2B2;2

. . .

NnBn;1

NnBn;2

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
: ð18Þ

Let k = �k
1

f 21
� 1

f 22

� �
, which depends on frequency

only, we obtain

DFm�1 ¼ keLm�2n Q2n�1; ð19Þ

where vector Q is the product of electron density and the
magnetic field in each discrete cell. The discrete electron
density N is solved inversely from T in equation (16) and
Q is solved from DF in equation (19). Components of
the magnetic field are then decomposed from Q and N
reconstructed. Equations (16) and (19) are in the form
of equation (2) discussed in Section 2. Therefore
equation (7) is applied for the reconstruction of N and Q.
[30] In general, tomographic imaging of a vector field

in equation (19) is more ill-posed compared to a scalar
field imaging in equation (16), as the column size of the
ill-conditioned projection matrix eL is twice as large as
that in L for the same amount of measurements. The
challenge is to reconstruct two components of a vector
field when only the measured ‘total’ Faraday rotation
angle, which is a sum of the rotation along the x and y
axes in a 2-D plane, is given.
[31] Proper scaling of relevant physical parameters for

the combined tomographic imaging of the magnetic field
and electron density is crucial to an accurate reconstruction.
For example, in the reconstruction of B from the Faraday
rotation measurement, renormalizing the deterministic
regularization term by electron density Ne already found
from the phase difference measurement improves the
solution significantly by enforcing smoothness on B
itself rather than the measured product Q = NeB.

3.2. Algorithm Implementation and
Numerical Examples

[32] With examples involving 2-D images of Ne and B
from the MHD simulations for the magnetotail and bow
shock of Earth’s magnetosphere, we demonstrate perfor-
mance of the direct reconstruction algorithm and its
comparison with ART-type iterative algorithms that have
been applied for magnetospheric radio tomography in
previous work. The magnetospheric electron density and
magnetic field configurations were computed from an
MHD simulation [DeZeeuw et al., 2000] available
through the Community Coordinated Modeling Center
(CCMC) at NASA Goddard Space Flight Center. The
electron density is computed from the MHD ion density
assuming quasi-neutrality. The probing frequency is
selected based on the characteristic physical parameters
such as plasma frequency and electron gyrofrequency of
each region of interest in the following examples. The
grid cell size in the detailed MHD simulation is 0.25 RE.
The grid cell size in modeling the example tomographic
problems is 0.25–0.5 RE.
3.2.1. Performance of the Proposed Algorithm
[33] An 11-satellite tomographic imaging of Earth’s

magnetotail of the X-Yplane plasma sheet from an MHD
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Figure 5. MHD simulated electron density Ne (logarithm) and magnetic field B in an 11-satellite
probed region with frequencies 1.9 MHz and 2 MHz. See color version of this figure in the
HTML.
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Figure 6. Reconstructed electron density Ne (logarithm) and magnetic field B in an 11-satellite
probed region with frequencies 1.9 MHz and 2 MHz. See color version of this figure in the
HTML.
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Figure 7. Reconstructed Ne (logarithm) and B under 10% WGN in the measured phase
difference and Faraday rotation without other observations. See color version of this figure
in the HTML.
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Figure 8. Reconstructed Ne (logarithm) and B under 10% WGN in the measured phase
difference and Faraday rotation with other observations. See color version of this figure in
the HTML.
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simulation is shown in Figures 5 and 6, where brightness
scale denotes the electron density and arrow the magnetic
field vector. Figure 6 shows the reconstructed image for
the probed region without noise and in situ measure-
ments. Reconstruction errors for the electron density Ne

and the dominant component of the magnetic field vector
Bx are 7% and 14% respectively, which show that the
direct algorithm works well for cases without noise or in
situ measurements.
[34] To test robustness of the reconstruction method

with respect to noise, a 10% White Gaussian Noise
(WGN) with zero mean is added to the ‘measured’
phase difference for TEC and Faraday rotation angle.
The WGN is constructed by scaling up a random
WGN by a factor of 10% of the ‘measured’ maxi-
mum phase difference for TEC or Faraday rotation
angle. Therefore the magnitude of the WGN in the
measurements is roughly 3 degrees of phase differ-
ence or 0.2 degrees of Faraday rotation. Figures 7
and 8 show the reconstructed image for the probed
region with 10% WGN in TEC and Faraday rotation
angle respectively. The reconstruction error of the
magnetic field B is directly related to the error of the

electron density Ne. With the rational selection of
regularization parameters l1 and l2 from equation (8),
Figure 7 shows that a reasonable reconstruction can be
achieved (roughly 12% error in Ne and 17% error in Bx).
Therefore our direct reconstruction technique is robust in
the presence of modest noise.
[35] The main advantage of the proposed reconstruc-

tion method is its adaptability and extensibility to incor-
porate in situ measurements or other prior observations
to improve solution. In situ measurements can improve
reconstruction significantly in the presence of noise.
With regularization that incorporates local observations
at each satellite as in equation (7), Figure 8 shows a
better reconstruction with 9.3% error in Ne and 9.7%
error in Bx, is obtained. In fact, the reconstruction is
robust and insensitive to the weighting parameters.
Compared to the reconstruction without local measure-
ments, the B reconstruction is improved more by the in
situ measurements because the B reconstruction by itself
is more ill-conditioned.
[36] Although the 11-satellite orbit configuration in

Figure 5 may not be optimal from a mission-design
perspective, it is used to demonstrate good performance

Figure 9. MHD simulated electron density Ne and magnetic field B for an 7-satellite radio
tomography mission with frequencies 200 kHz and 400 kHz. See color version of this figure
in the HTML.
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Figure 10. Reconstructed electron density Ne and magnetic field B for an 7-satellite radio
tomography mission with frequencies 200 kHz and 400 kHz. See color version of this figure
in the HTML.
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Figure 11. MHD simulated electron density Ne and magnetic field B for an 11-satellite radio
tomography mission with frequencies 200 kHz and 400 kHz. See color version of this figure
in the HTML.
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of the proposed direct reconstruction method when con-
stellation is in a favorable static configuration. In a
mission design for true tomographic reconstruction, in
which continuous Faraday rotation or phase difference
measurements are necessary to imaging the time-varying
electron density and magnetic field, a more realistic orbit
strategy would be, for example, one at perigee, two at
apogee, and four at the upward and downward leg of orbit
with larger distances toward perigee and shorter toward
apogee. At any time in such a configuration, there would
be at least 10 satellites that could perform TEC or Faraday
rotation measurements continuously. The one at perigee
blocked by the solid Earth for line-of-sight measurement
could be used for continuous in situ measurements.
[37] The proposed reconstruction method in fact per-

forms well even with fewer satellites. Figure 9 shows the
MHD simulated electron density and magnetic field of
Earth’s magnetotail in the X-Z plane and the location of
seven satellites in a single orbit for radio tomography.
The mean square errors of the reconstruction shown in
Figure 10 committed by the direct method with deter-
ministic regularization are 10% for the electron density
Ne and 13.3% for the Bx component, which is dominant

in the region. This demonstrates flexibility of the direct
reconstruction method under realistic situations with
fewer satellites.
[38] The regularized direct reconstruction method per-

forms well even in magnetospheric regions with sharp
density and field gradients. The bow shock of the
Earth’s magnetosphere is characterized by an increase
in plasma density, and increased magnetic field turbu-
lence. Figure 11 shows the MHD simulated electron
density and magnetic field of the bow shock and the
location of eleven satellites in a single orbit for radio
tomography. The mean square errors of the reconstruc-
tion shown in Figure 12 committed by the direct method
with deterministic regularization are 3% for the electron
density Ne and 18% for the By component, which is
dominant in the region. The larger error in By is mainly
due to oversmoothing of the magnetic field on the left
side of the image. By incorporating in situ measurements
at each satellite, the reconstruction errors are signifi-
cantly improved to 2.8% for the electron density Ne and
7.3% for the By component. This demonstrates again
flexibility and robustness of the direct reconstruction
method.

Figure 12. Reconstructed electron density Ne and magnetic field B for an 11-satellite radio
tomography mission with frequencies 200 kHz and 400 kHz. See color version of this figure
in the HTML.
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3.2.2. Comparison With Iterative Algorithms
[39] The ART-type iterative methods such as MART

and IART are shown in the work of Ganguly et al. [2000]
and Ergun et al. [2000] to reconstruct Ne and B
reasonably well under relatively ideal situations, where
a moderate number of satellites placed in at least two
orbits are employed for a good path coverage over the
probed region. To demonstrate performance of the direct
reconstruction algorithm, we have implemented exactly
the MART and ART that have been used by Ganguly et
al. [2000] and Kak and Slaney [2001, p. 283] with the
same initialization and convergence criteria used by
Ganguly et al. [2000]. Tables 1 and 2 show the mean
square errors committed by various reconstruction
methods for the example in Figures 9 and 10, where a
single satellite orbit is used to probe an X-Z slice of the
plasma sheet in the magnetotail. Horizontal measure-
ments through satellites in a second orbit on the right
side of the probed region are crucial for a good
reconstruction in ART-type iterative methods. This is
because in the satellite probed region, smooth Ne and Bx

(dominant B component) from MHD simulations vary
mainly along Z direction, meaning that the gradient of Ne

and Bx is much larger in the Z direction than that in the X
direction, therefore horizontal line-of-sight measure-
ments that detect Z direction gradient are more important
than the vertical measurements. Even 49 satellites in a
single orbit are still not sufficient and a second orbit is
necessary for ART and MART to obtain accurate results.
The reconstruction errors increase drastically for ART
and MART when satellites become sparse. The main
reason is that in ART-type iterative methods, reconstruc-
tion in each discrete cell is carried out only if there is
line-of-sight path across it. When satellites become
sparse, the number of cells that intersect with ray path
decreases drastically, so is the quality of the reconstruc-
tion. In other words, for a simultaneous reconstruction of
Ne and B, at least 25–30 satellites placed in two carefully
designed orbits are needed and the convergence may be
slow. In Tables 1 and 2, we have selected about the
optimal discrete mesh-grid size for ART and MART. The
direct method with regularization, on the other hand, is
less sensitive to the mesh-grid size and the spatial
coverage of satellites for the studied example where the
electron density Ne from MHD simulations is smooth

and the magnetic field has a dominant Bx component.
The regularization term fills out gaps smoothly in these
blind cells that are ignored in iterative methods. It is
robust even with fewer satellites, and generally speaking
it is faster and still easy to implement.

3.3. Limitations and Optimal Reconstruction

[40] One limitation of our technique is its tendency to
oversmooth sharp gradients, particularly in the magnetic
field. In situations where the solution is not globally
smooth, an l2 norm quadratic energy regularizer may
overly enforce smoothness to the solution. Therefore an
l1 norm edge-preserving regularizer that enforces piece-
wise smoothness of the solution may perform better
[Kamalabadi et al., 2002]. The implementation of an l1
norm edge-preserving regularizer, however, is not
straightforward for a direct reconstruction algorithm.
An iterative method such as conjugate gradient method
may be required.
[41] In practice, the TEC and Faraday rotation mea-

surements from satellite transmitter and receiver are
useful in both directions. For instance, measurements
from satellite i to satellite j are slightly different from
measurements from satellite j to satellite i due to the
small time variation (the two measurements cannot be
done at the same time). Therefore in reality this could be
viewed as additional useful information we have for field
reconstruction and it may also reduce noise in the
measurements. This is particularly useful for vector field
reconstruction.

4. Conclusions

[42] We introduce a flexible and robust direct recon-
struction technique for radio tomographic imaging of
electron density and vector magnetic field in the magne-
tosphere. Numerical simulations based on MHD model
magnetospheric parameters were presented and we
showed that this technique has a number of advantages
compared to other reconstruction techniques that have
been applied to magnetospheric tomography. Most
importantly, this technique is robust and reasonably
accurate even when relatively few satellites (as few
as 7) are used and performs significantly better in this
case than ART and MART techniques. The technique
contains a very flexible approach for introducing addi-

Table 1. Mean Square Errors of Electron Density Ne

Committed by MART and Direct Method With Regularization

Reconstruction Methods

Number of Satellites

7 13 25 49

MART, % 21.9 17.8 9.68 7.95
Direct, % 5.87 4.73 3.74 3.69

Table 2. Mean Square Errors of Magnetic Field B Committed

by ART and Direct Method With Regularization

Reconstruction Methods

Number of Satellites

7 13 25 49

ART, % 51.0 38.3 23.1 21.7
Direct, % 10.9 8.11 5.94 4.92
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tional information, such as in situ measurements, into the
reconstruction, which can improve the quality of the
resulting image. In the framework of this approach it is
easy to control the trade-off between enforcing agree-
ment with the path-integrated measurements, any addi-
tional information, and overall smoothness of the image.
Simulations show that this technique gives good results
in dramatically different regions (i.e., the plasma sheet
and the bow shock) of the magnetosphere without major
modification. Even with practical limitations imposed by
the realities of satellite missions, radio tomography
should enable the large-scale measurements needed to
resolve many open questions in magnetospheric physics.

[43] Acknowledgment. This research was supported by
NASA Geospace Sciences grant NAG5-12072.
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