Admin

- Reading
 - Chapter 9
 - Skipping 8 (optional reading if you want)

- Homework 4 out now
 - Due April 5

- Project
 - Should be making some solid progress here
 - Don’t wait until the last minute!
What have we been talking about?

- What did we talk about last time?
What have we been talking about?

- What did we talk about last time?
 - Graphs:
 - DFS
 - BFS
 - Dijkstra’s Shortest Path
Now: Minimal Spanning Tree

- Problem: Have many buildings which need power connected
 - Potential paths indicated with cost as edge weights
- Goal:
 - Connected tree
 - Minimal cost
• Prim’s algorithm:
 • Pick a node
 • Build a tree out from it..
 • Add minimal cost edges out from current set of nodes
 • As long as they don’t form a cycle
MST: Algorithm 1—Prim’s

- Track a Priority Queue of edges for what to consider next
MST: Algorithm 1—Prim’s

- Track a Priority Queue of edges for what to consider next
- Start with any node you want
MST: Algorithm 1—Prim’s

• Track a Priority Queue of edges for what to consider next
• Start with any node you want
 • Add its edges to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s adders to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s adds to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s adds to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s addes to the PQ
MST: Algorithm 1—Prim’s

- Repeat until all nodes are in the MST
 - Dequeue an edge from the PQ
 - If it makes a cycle, discard it
 - If not, add the edge + node to the MST
 - Then add the new node’s added to the PQ
MST: Algorithm 1—Prim’s

- All nodes are in MST, so can stop
 - Could also continue to dequeue and discard edges until PQ is empty
MST: Algorithm 1—Prim’s

- All nodes are in MST, so can stop
 - Could also continue to dequeue and discard edges until PQ is empty

What is the running time?
MST: Algorithm 1—Prim’s

- All nodes are in MST, so can stop
 - Could also continue to dequeue and discard edges until PQ is empty

What is the running time?
It depends…
Prim’s Running time

- It depends... on what?
Prim’s Running time

• It depends... on what?
 • Representation of Graph
 • Adjacency Matrix
 • Adjacency List—let’s assume this one.
 • PQ implementation
 • Binary Heap? Efficient—let’s assume this one.
 • But fancy heaps can do better...
Prim’s running time

- O(V) “getAdjacencies” operations
 - We can implement this in O(1) time/operation
- O(E) “PQ.enqueue” operations
 - Each of these takes O(lg E) time in a binary heap
- O(E) “PQ.dequeue” operations
 - Also O(lg E) time
- O(E) “test For cycle” operations
 - ??
 - We didn’t really pin down how to do this did we?
 - Add the edge in, do a DFS, see if we find a loop?
 - Seems slow... Can we do better?
Prim’s: Test for Cycle

- In this particular case, we can exploit the fact that we are building a tree to test for a cycle
 - Keep the Set of vertices already in our MST.
 - An edge creates a cycle iff the Set contains both ends of the edge already

- We can implement the Set with a HT and this test (and update) in $O(1)$ time
Prim’s running time

- **O(V)** “getAdjacencies” operations
 - We can implement this in O(1) time/operation
- **O(E)** “PQ.enqueue” operations
 - Each of these takes O(lg E) time in a binary heap
- **O(E)** “PQ.dequeue” operations
 - Also O(lg E) time
- **O(E)** “test For cycle” operations
 - O(1)

- So that is O(V + E * lg E + E * lg E + E)
 - Equals: O(V + E * lg E)
 - Equals: O(E * lg E) //Assuming E >= V
Prim’s: slightly different formulation

- Slightly different approach: keep Vertices in the PQ instead of Edges

- PQ ordered by shortest edge length from “tree so far” to that vertex
 - Add a vertex to the tree -> decrease key
 - “bubble up”: $O(\lg N)$ time operation
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle

Prio Queue

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Priority</th>
<th>Adjacent Vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>H</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle

Prio Queue

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Priority</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle
MST: Algorithm 1.1—Prim’s v2.0

- Start with all vertices in PQ
 - Distance to all but one is “infinity”
 - Distance to starting choice is 0
- Dequeue vertex
 - Update PQ edge weights
 - No need to test for cycle

What is the running time now?
Prim’s running time

- \(O(V)\) “getAdjacencies” operations
 - We can implement this in \(O(1)\) time/operation
- \(O(V)\) “PQ.enqueue” operations
 - Each of these takes \(O(lg V)\) time in a binary heap
- \(O(V)\) “PQ.dequeue” operations
 - Also \(O(lg V)\) time
- \(O(E)\) “PQ.decreaseKey” operations
 - Each of these takes \(O(lg V)\) time

So now:
- \(O(V + V \times lg V + V \times lg V + E \times lg V)\)
- Equals: \(O((V + E) \times lg (V))\)
- Equals: \(O(E \times lg (V))\) \(\text{ //Assuming } E \geq V\)
Difference in the two

- Difference between the two:
 - First: $O(E \times \lg E)$
 - Second: $O(E \times \lg V)$

- $E \geq V$, so second is better right?
 - $E \sim O(V^2)$

- Interestingly, this is practically true, but not theoretically:
 - $O(E \times \lg E) = O(E \times \lg V^2) = O(E \times 2 \lg V) = O(E \times \lg V)$
MST: Algorithm 2—Kruskal’s

- Kruskal’s algorithm:
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- **Kruskal’s algorithm:**
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- Kruskal’s algorithm:
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- **Kruskal’s algorithm:**
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree

![Graph with labels and prioritized queue]

<table>
<thead>
<tr>
<th>Prio Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
</tr>
<tr>
<td>BH</td>
</tr>
<tr>
<td>EH</td>
</tr>
<tr>
<td>AD</td>
</tr>
<tr>
<td>DC</td>
</tr>
<tr>
<td>CF</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>ED</td>
</tr>
<tr>
<td>CG</td>
</tr>
<tr>
<td>DF</td>
</tr>
<tr>
<td>AG</td>
</tr>
</tbody>
</table>
Kruskal’s algorithm:

- Put all edges in a PQ
- Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- Kruskal’s algorithm:
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
Kruskal’s algorithm:

- Put all edges in a PQ
- Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- Kruskal’s algorithm:
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- Kruskal’s algorithm:
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- Kruskal’s algorithm:
 - Put all edges in a PQ
 - Repeatedly dequeue an edge
 - If it makes a cycle, discard it
 - If not, add it to the tree
MST: Algorithm 2—Kruskal’s

- As with Prim’s we could stop once we have all nodes
 - Or just keep discarding edges until our PQ is empty

- Note: may be different possible MSTs
 - E.g., equal weights
TSP approximation with MST

- Recall: Traveling Salesperson Problem = NP complete
 - Can do a decent approximation of best solution with MST
 - IF our graph obeys triangle inequality
 - Bounded to at most 2x optimal
Recall: Traveling Salesperson Problem = NP complete
 - Can do a decent approximation of best solution with MST
 - IF our graph obeys triangle inequality
 - Bounded to at most 2x optimal
 - Our graph does not
 - Need: $EB + BD \geq ED$ [and other problems]
TSP approximation with MST

- Let’s see what happens if we change the edge weights
 - Make an example that obeys the triangle inequality
TSP approximation with MST

- Step 1: Compute MST
TSP approximation with MST

- Step 1: Compute MST
- Step 2: Do pre-order traversal
 - G F C A B H E D
TSP approximation with MST

- Step 1: Compute MST
- Step 2: Do pre-order traversal
 - G F C A B H E D
- Step 3: Use that path
 - Didn’t draw all of the edges here, so need to add in DG (29+10) to finish
TSP approximation with MST

- Step 1: Compute MST
- Step 2: Do pre-order traversal
 - G F C A B H E D
- Step 3: Use that path
 - Didn’t draw all of the edges here, so need to add in DG (29+10) to finish
Strongly Connected Components

- Strongly Connected Components
 - In a directed graph...
 - An SCC is comprised of nodes that can all reach each other
Strongly Connected Components

- H can get to everywhere...
 - But nowhere can get to H, so it's in an SCC by itself
- E B D can all get to each other
 - ACFG can't get to E
- ACFG can all get to each other
Before how, why?

- Why would we want to do this?
 - (Any application of graphs is fair game)
Before how, why?

- Why would we want to do this?
 - (Any application of graphs is fair game)
- Graph as network/transport
 - Can we move data/goods/etc from any point to any other?
 - If not, where are the disconnects?
- Compilers:
 - Call graph:
 - Nodes = functions
 - Edges = “calls”
 - SCC is a mutually recursive group of functions...
 - Collapse into one node to make CG a DAG, do inter-procedural opt
 - Analyze recursive group as one entity
Strongly Connected Components

• Now, let's think about how we are going to do this
SCC: Inefficient approach

- Inefficient approach:
 - For each node N
 - Do a DFS from N
 - Build up the set of nodes you can reach from N
 - Put that Set into a Map (Nodes -> Set of reachable nodes)
 - For each node N
 - Ans ={}
 - For each X in Map[N]
 - If Map[X] contains S
 - Ans = Ans + X

What is the running time?
Running time

• V DFSes
 • Each $O(V + E)$
 • And doing Set insert $O(1)$
 • And Map insert: $O(1)$

• V more
 • Map lookup: $O(1)$
 • Iteration across a set of nodes: $O(V)$
 • Check set containment: $O(1)$
 • Add to set: $O(1)$

• $O(V * (V+E) + V * V) = O(V * (V+E))$
SCC: Efficient approach

- Keep a map from Nodes to
 - Index (increase for every node we visit)
 - Lowest index adjacent to it
 - Actually lowest “lowest index” adjacent to it
 - Note: will be lowest index it can reach
SCC: Efficient approach

- Keep a map from Nodes to
 - Index (increase for every node we visit)
 - Lowest index adjacent to it
 - Actually lowest “lowest index” adjacent to it
 - Note: will be lowest index it can reach

- Do a DFS
 - Maintain a separate Stack which we will pop from when we find an SCC
 - We “find” an SCC when our DFS gets back to a node where its index = its lowest index
SCC: Efficient approach

- Recursion Stack:
 - B
- Index:
 - 1
SCC: Efficient approach

- Recursion Stack:
 - B E
- Index:
 - 2

<table>
<thead>
<tr>
<th>Stk</th>
<th>Idx</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCC: Efficient approach

- Recursion Stack:
 - B E D
- Index:
 - 3
SCC: Efficient approach

- Recursion Stack:
 - B E D B //visited already
- Index:
 - 3
SCC: Efficient approach

- Recursion Stack:
 - B E D
- Index:
 - 3
SCC: Efficient approach

- Recursion Stack:
 - B E D A
- Index:
 - 4
SCC: Efficient approach

- Recursion Stack:
 - B E D A G
- Index:
 - 5

<table>
<thead>
<tr>
<th>Stk</th>
<th>Idx</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>G</td>
<td>5</td>
</tr>
</tbody>
</table>
SCC: Efficient approach

- Recursion Stack:
 - B E D A G C
- Index:
 - 6
SCC: Efficient approach

- Recursion Stack:
 - B E D A G C A //already visited
- Index:
 - 6
SCC: Efficient approach

- Recursion Stack:
 - B E D A G C
- Index:
 - 6
SCC: Efficient approach

- Recursion Stack:
 - B E D A G
- Index:
 - 6

<table>
<thead>
<tr>
<th>Stk</th>
<th>Idx</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCC: Efficient approach

- Recursion Stack:
 - B E D A G F
- Index:
 - 7
SCC: Efficient approach

- Recursion Stack:
 - B E D A G F C //already visited
- Index:
 - 7
SCC: Efficient approach

- Recursion Stack:
 - B E D A G F
- Index:
 - 7
SCC: Efficient approach

- Recursion Stack:
 - B E D A G F G //already visited
- Index:
 - 7

<table>
<thead>
<tr>
<th>Stk</th>
<th>Idx</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>7</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCC: Efficient approach

- Recursion Stack:
 - B E D A G F
- Index:
 - 7
SCC: Efficient approach

- Recursion Stack:
 - B E D A G
- Index:
 - 7
SCC: Efficient approach

- Recursion Stack:
 - B E D A
- Index:
 - 7
- When we get back to “A” we notice that \text{Idx} = \text{Low}
 - This means A was the first node we saw in some SCC
 - Everything with low = 4 is in the SCC
 - Pop Stack until we get to A, put each popped item into the SCC
SCC: Efficient approach

- Recursion Stack:
 - B E D
- Index:
 - 7

- Note that at D
 - Low is 1
 - A’s low is higher (4 vs 1) -> no update
SCC: Efficient approach

- Recursion Stack:
 - B E
- Index:
 - 7
SCC: Efficient approach

- Recursion Stack:
 - B
- Index:
 - 7

- At B, we find another SCC
 - Low = Idx = 1
 - Pop stack until we find B
SCC: Efficient approach

- Recursion Stack:
 -
- Index:
 - 7

- Our DFS ended...
- But we have not assigned all nodes to SCCs
- So start another DFS at a node with no SCC
SCC: Efficient approach

- Recursion Stack:
 - H
- Index:
 - 8
- New DFS starts at H

<table>
<thead>
<tr>
<th>Stk</th>
<th>Idx</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
SCC: Efficient approach

- Recursion Stack:
 - H B //already visited and assigned SCC
- Index:
 - 8

B is both visited and assigned an SCC
Not in the stack
So we don’t update our Low from it
SCC: Efficient approach

- Recursion Stack:
 - H E //already visited and assigned SCC
- Index:
 - 8

Same for E
SCC: Efficient approach

- Recursion Stack:
 - H
- Index:
 - 8

After exploring H’s adjacencies, we find it is in an SCC by itself
SCC: Efficient approach

- Recursion Stack:

- Index:
 - 8

DFS done
All nodes in SCCs
Done!

What is the runtime?
Runtime for SCC

- Runtime is basically that of DFS $O(V+E)$
 - Map + index operations are $O(1)$
 - Need to search stack: could be $O(V)$ for each node
 - ...or could just keep Set of nodes in Stack for $O(1)$ check
That’s all for graphs

- We’ve done a bunch of graphs
 - Many things in lecture
 - Plus max flow in recitation
- That is all we are going to do in this class
 - Learn more in algorithms classes
 - Or other classes that use such things
 - E.g., graph coloring register allocator in compilers