ECE 590.01
C++ Programming, Data structures, and Algorithms

Graphs II
Admin

• Reading
 • Chapter 9
 • Skipping 8 (optional reading if you want)

• Homework 4 out soon
 • Due April 5 (Almost 3 weeks from now)

• Project
 • Should be making some solid progress here
 • Don’t wait until the last minute!
What have we been talking about?

- What did we talk about last time?
What have we been talking about?

• What did we talk about last time?
 • Graphs:
 • Overview
 • ADT
 • Representations:
 • Adjacency Matrix
 • Adjacency List
 • NP Completeness
 • TSP
 • Coloring
Today: Finding a path

- Given a graph, find a path from a start node to an end node
 - E.g., from A to F
Today: Finding a path

Given a graph, find a path from a start node to an end node

- E.g., from A to F
- Most obvious choice: A -> C -> F
 - How would we find this algorithmically though?
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = A
 - To = F
 - A is adjacent to B, so if we can find a path from B to F, then easy
 - (That path + A on the front)
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = B
 - To = F
 - B is adjacent to E, so maybe we can find a path from E to F?
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = E
 - To = F
 - No, this looks like a dead end...
 - But we had other options at B
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = B
 - To = F
 - B is also adjacent to D, so maybe we can find a path from D to F?
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = D
 - To = F
 - D is adjacent to C...
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = C
 - To = F
 - C is adjacent to F...
Today: Finding a path

- Graph search algorithm 1: Depth First Search (DFS)
 - From = F
 - To = F
 - Finding a path from F to F is trivial (same node)
DFS: Algorithm (v 1.0)

• Naturally recursive:

• dfs(f, t)
 • If f is the same as t
 • Return the path [f]
 • Otherwise,
 • For each node N adjacent to f
 • X = dfs(N, t)
 • if X is a valid path then
 • The answer is the path with f on the front of X
 • If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”

Everyone buy this? Maybe we should test it anyways?
DFS: Algorithm (v 1.0)

- dfs(G,E)
 - If G is the same as E
 - Return the path [G]
 - Otherwise,
 - For each node N adjacent to G
 - X = dfs (N, E)
 - if X is a valid path then
 - The answer is the path with G on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”

Let’s try this for G to E
DFS: Algorithm (v 1.0)

- **dfs(G,E)**
 - If G is the same as E
 - Return the path [G]
 - Otherwise,
 - For each node N adjacent to G
 - X = dfs (N, E)
 - if X is a valid path then
 - The answer is the path with G on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”

They are not the same
DFS: Algorithm (v 1.0)

- **dfs(G,E)**
 - If G is the same as E
 - Return the path [G]
 - Otherwise,
 - For each node N in {A, C, F}
 - X = dfs (N, E)
 - if X is a valid path then
 - The answer is the path with G on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”
DFS: Algorithm (v 1.0)

- `dfs(G, E)`
 - If `G` is the same as `E`
 - Return the path `[G]`
 - Otherwise,
 - For each node `N` in `{A, C, F}`
 - `X = dfs(N, E)`
 - If `X` is a valid path then
 - The answer is the path with `G` on the front of `X`
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”

Do A first
(we’ll assume they are Ordered alphabetically to Be concrete)
DFS: Algorithm (v 1.0)

- Dfs(A, E)
 - If A is the same as E
 - Return the path [A]
 - Otherwise,
 - For each node N adjacent to A
 - X = dfs(N, E)
 - if X is a valid path then
 - The answer is the path with A on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”
DFS: Algorithm (v 1.0)

- Dfs(A, E)
 - If A is the same as E
 - Return the path [A]
 - Otherwise,
 - For each node N in {B, C, D, G}
 - X = dfs(N, E)
 - If X is a valid path then
 - The answer is the path with A on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”
DFS: Algorithm (v 1.0)

- **Dfs(B,E)**
 - If B is the same as E
 - Return the path [B]
 - Otherwise,
 - For each node N adjacent to B
 - X = dfs (N, E)
 - if X is a valid path then
 - The answer is the path with B on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”
DFS: Algorithm (v 1.0)

- Dfs(B,E)
 - If B is the same as E
 - Return the path [B]
 - Otherwise,
 - For each node N in {A, D, E}
 - X = dfs (N, E)
 - if X is a valid path then
 - The answer is the path with B on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”
DFS: Algorithm (v 1.0)

- Dfs(A,E)
 - If B is the same as E
 - Return the path [B]
 - Otherwise,
 - For each node N in {B,C,D,G}
 - X = dfs (N, E)
 - if X is a valid path then
 - The answer is the path with B on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”

Recursion stack:
- Dfs(G,E) N = A
- Dfs(A,E) N = B
- Dfs(B,E) N = A

Now recursively doing dfs(A,E)
Explore B first....

Anyone see a problem?
DFS: Algorithm (v 1.0)

- We will get stuck, recursing back and forth between A and B.
 - Eventually, the stack will overflow and the program will crash (segfault)

- Two questions:
 - Why did we not run into this sort of problem before (lists, trees, etc) but are running into it now?
 - How do we fix it?
Why now?

- This problem: not in lists/trees, but in graphs
 - Why?

 - Lists and trees do not have cycles
 - Moving “down” a list naturally moves you closer to the end (in one direction). Can’t go backwards
 - Graphs can have cycles:
 - No clear notion of “forward progress” by moving to an adjacent node (may have already been there).

- Before Question 2 (how do we fix it), let’s talk about termination in general
 - Termination = ending: not going into infinite loop/recursion
Termination

• How can you be sure your algorithm terminates
 • For all possible inputs?
Termination

- How can you be sure your algorithm terminates
 - For all possible inputs?
 - Ask this guy?
Termination

• How can you be sure your algorithm terminates
 • For all possible inputs?
 • Ask this guy?
 • No, that’s a Terminator
Termination

• How can you be sure your algorithm terminates
 • For all possible inputs?

• Establish a “measure” (sometimes called “energy”) which
 • Is an ordinal number
 • For simplicity: think natural numbers
 • Decreases with every “step”
 • Loop iteration or recursive call

• Must eventually terminate, since ordinals (and naturals) have lower bound: 0

• For lists, trees, etc:
 • Length of (remaining) list, height of (remaining tree) etc work
Termination

- We aren’t going to prove termination
 - We don’t do proofs in this course

- ...but it’s good to know what the right tool to reason about your code is
 - Write some big complex algorithm and want to know “does this always terminate”
 - Now you know how to approach it
Termination: Aside

• Why doesn’t our compiler check if our code terminates?
 • Would be a really nice feature:
 • Warning: you wrote an infinite loop in graph.cpp: 107-142
 • How would you write an algorithm to see if code terminates?
Termination: Aside

- Why doesn’t our compiler check if our code terminates?
 - Would be a really nice feature:
 - Warning: you wrote an infinite loop in graph.cpp: 107-142
 - How would you write an algorithm to see if code terminates?
 - Unfortunately, we cannot possibly do this
 - It’s provably impossible.
 - Proof by “The Princess Bride”
Let’s think about what we would do

• First, let’s imagine that we could write this function:

```cpp
bool halts(string code, string input) {
    // magic goes here
}
```

This function takes two inputs:

- **code**: the C++ source code for a function as a string (assume the function takes a string and returns void)
- **input**: the input we want to test

And returns true or false, depending on if the function in “code” halts on the given input

```cpp
halts(“void f(string x) { return x.length() > 4; }”, “abc”);
```

• Returns true
Now, let us suppose I write this...

```cpp
bool weird(string a) {
    if(halts(a,a)) {
        while(1) { ; }
    }
    return false;
}
```

If the function represented by the string a halts on input a, go into an infinite loop
Else return false.
Strange, but valid...
Now, let us suppose I write this...

```cpp
string s = "bool weird(string a) {
    if(halts(a,a)) {
        while(1) { ; }
    }
    return false;
}");
```

What is `halts(s,s);`?
Cup in front of me: it returns true
Cup in front of you: it returns false
(The cup with the wrong answer is poisoned)
Clearly it's not in the cup in front of me

```cpp
string s = "bool weird(string a) {
    if(halts(a,a)) {
        while(1) { ; } }
    return false;
}";
```

What if `halts(s,s)` returns true?
That means that `weird(s)` halts...
but if that’s the case, then `weird(s)` goes into an infinite loop... so it does not halt

Ok, so it must be in the cup in front of you?
string s = "bool weird(string a) {
 if(halts(a,a)) {
 while(1) { ; }
 }
 return false;
}
"

What if halts(s,s); returns false?
That means that weird(s) does not halt...
but if that’s the case, then weird(s) just returns false..
so it does halt
So where is the poison?

What is \texttt{halts}(s,s); ?

Cup in front of me: it returns true
Cup in front of you: it returns false
(The cup with the wrong answer is poisoned)
So where is the poison?

What is \texttt{halts}(s, s); \\
Cup in front of me: it returns true \\
Cup in front of you: it returns false \\
(The cup with the wrong answer is poisoned)
So where is the poison?

What is \texttt{halts(s, s);} ?

Cup in front of me: it returns true
Cup in front of you: it returns false
(The cup with the wrong answer is poisoned)

It cannot possibly return true
...and it cannot possibly return false

So the only possibility is that \texttt{halts(s, s)} cannot give the right answer (either its wrong, or goes into an infinite loop) —its impossible to write it correctly.
Ok, back to graphs

- Undecideability: some programs cannot be written
 - At least not with models of computation as we understand them
 - Maybe if you have a fundamentally different way to compute you could

- Those were a few important lessons
 - Back to graphs, and fixing our DFS
DFS: Algorithm (v 1.0)

Now, let’s see how to fix it

- Problem: went back to A after we already went there
 - Do you all know the joke about the guy who goes to the Dr...
• Dr, Dr! My algorithm doesn’t terminate when I go back to nodes I already visited!
 • Well, don’t go back to nodes you already visited!

• How do we detect this?
 • Keep a Set of nodes we visited, check if it contains “from” already
 • I told you Sets were great: right?
DFS: Algorithm (v 2.0)

- **dfs(f,t,visited)**
 - If f is the same as t
 - Return the path [f]
 - If visited contains f
 - Give back an answer of no valid path
 - **Put f into visited**
 - Otherwise,
 - For each node N adjacent to f
 - X = dfs (N, t, visited)
 - if X is a valid path then
 - The answer is the path with f on the front of X
 - If you don’t find any valid path from any adjacent node, then give back an answer of “no valid paths”
Termination

• How can we measure this function?
 • Total nodes in graph minus nodes in visited set
 • Each time we make a recursive call, we do so with at least one more (f) in visited than we had in the set when the current call was made
 • So Total – Visited goes down

• This new algorithm will work
 • And will result in a path of G -> A -> B -> E for this
 • But first will explore
 • G->A->B->A [visited A, give up]
 • G->A->D->A [visited A, give up]
 • G->A->D->B [visited B, give up]
 • G->A->D->C->A [visited A, give up]
 • G->A->D->C->F->G [visited G, give up]
 • G->A->D->C->G [visited G, give up]
DFS: Algorithm (v 2.0b)

- **dfs(F, T)**
 - S is an empty stack (of Paths)
 - V is an singleton set (of Nodes) with F in it
 - Push the path [F] onto S
 - As long as S is not empty
 - P is the result of popping the top of S
 - N is the last node on the path P
 - If N is equal to T
 - Then return P
 - For each X adjacent to N
 - If V does not contain X then
 - Add X to V
 - Push the path (P with X added to the end) onto S
 - When the stack is empty, there are no possible paths

Don’t like recursion?
We can do it iteratively, with an explicit stack
DFS: Potential for long paths

- A->B->D->C->F is a valid path...
- But probably not the best one
 - Probably prefer A->C->F or A->G->F
- On the plus side: it's easy/elegant to implement recursively
 - No explicit extra data structures
DFS vs BFS

• Depth first search vs Breadth first search

• Conceptually
 • DFS = exploring a maze with yarn to lead you back the way you came
 • BFS = pouring water in at “from”, seeing how it gets to “to”
BFS

- First explore A->B
 - Same start as before
 - But then...

ECE 590.01 (Hilton): Graphs II
• First explore A->B
 • Same start as before
 • But then... do A->C next
 • Then A->D
 • Then A->G
 • Then A->B->E
DFS: Algorithm (v 2.0b)

- `dfs(F, T)`
 - `S` is an empty stack (of Paths)
 - `V` is a singleton set (of Nodes) with `F` in it
 - Push the path `[F]` onto `S`
 - As long as `S` is not empty
 - `P` is the result of popping the top of `S`
 - `N` is the last node on the path `P`
 - If `N` is equal to `T`
 - Then return `P`
 - For each `X` adjacent to `N`
 - If `V` does not contain `X` then
 - Add `X` to `V`
 - Push the path `(P with X added to the end)` onto `S`
 - When the stack is empty, there are no possible paths
BFS

- Let’s see this in action
 - Queue [A]
 - Visited A
BFS

- Let’s see this in action
 - Queue [A,B], [A,C], [A,D], [A,G]
 - Visited A,B,C,D,G
• Let’s see this in action
 • Queue [A,C], [A,D], [A,G], [A,B,E]
 • Visited A,B,C,D,E,G
BFS

- Let’s see this in action
 - Queue [A,D], [A,G], [A,B,E], [A,C,F],
 - Visited A,B,C,D,E,F,G
BFS

- Let’s see this in action
 - Queue [A,G], [A,B,E], [A,C,F],
 - Visited A, B, C, D, E, F, G
• Let’s see this in action
 • Queue [A,B,E], [A,C,F],
 • Visited A,B,C,D,E,F,G
BFS

- Let’s see this in action
 - Queue [A,C,F] Success!
 - Visited A,B,C,D,E,F,G
Shortest (weighted) Path

- BFS finds a path with the fewest number of “hops”
 - But what if we want the shortest by total edge weight
 - May not be fewest hops
Dijkstra’s Algorithm (w/ a PQ)

- `dijkstra(F,T)`
 - Q is an empty priority queue (of Paths, ordered by total weight)
 - V is the empty set (of Nodes)
 - Push the path [F] onto Q
 - As long as Q is not empty
 - P is the result of dequeueing from Q
 - N is the last node on the path P
 - If N is equal to T
 - Then return P
 - If N is not in V, then
 - Add N to V
 - For each X adjacent to N
 - Enqueue the path (P with X added to the end) onto S
 - When the stack is empty, there are no possible paths
Two notes on this

• 1: You may see Dijkstra’s algorithm presented many ways. BFS with a priority queue instead of a regular queue is easiest to understand/implement

• 2: I re-arranged visited set operations occur
 • Either of these ways is valid for a BFS
 • The earlier way does not work for Dijkstra’s
 • It may omit a shorter (weighted) path found later in the process
 • We now “visit” something only when we are processing its last node, at which point we have found the shortest path to it
Any graph search algorithm you want

- dijkstra(F,T)
 - Q is an empty priority queue (of Paths, ordered by total weight)
 - V is the empty set (of Nodes)
 - Push the path [F] onto Q
 - As long as Q is not empty
 - P is the result of dequeueing from Q
 - N is the last node on the path P
 - If N is equal to T
 - Then return P
 - If N is not in V, then
 - Add N to V
 - For each X adjacent to N
 - Enqueue the path (P with X added to the end) onto S
 - When the stack is empty, there are no possible paths

Change out data structure, Get different algorithm
Stack = DFS
Queue = BFS
Priority Queue = Dijkstra’s
Better idea(s)?
Generic Graph Searching

• Could template over DS type and write once

• Could make an abstract class with 3 sub classes

• Both of these require making the function names uniform
 • Push vs enqueue
 • Pop vs dequeue
Next time: More graphs!

- Next time, we’ll continue with graphs