ECE 590.01
C++ Programming, Data structures, and Algorithms
Graphs I

Admin
- Reading
 - Chapter 9
 - Skipping 8 (optional reading if you want)
- Homework 4 out soon
 - Due April 5 (Almost 3 weeks from now)
- Project
 - Should be making some solid progress here
 - Don’t wait until the last minute!

What have we been talking about?
- What did we talk about last time?

What have we been talking about?
- What did we talk about last time?
 - Sorting
 - 6 different ways
 - And their tradeoffs
 - All in a ramp-up
 - For some reason, people love to ask sorting questions in interviews
 - Maybe because its so fundamental

Today: Graphs
- Graph ADT
 - Nodes + Edges
 - Edges connect two nodes
 - May or may not be weighted
 - May or may not be directional

Today: Graphs
- Graph ADT
 - Nodes + Edges
 - Edges connect two nodes
 - May or may not be **weighted**
 - May or may not be directional
Today: Graphs

- Graph ADT
 - Nodes + Edges
 - Edges connect two nodes
 - May or may not be weighted
 - May or may not be directional

Graphs: Many applications

- Graphs show up all over CS/CE
 - Networks (routing, etc)
 - Social Networks
 - Resource Allocation (register allocation)
 - Scheduling
 - Optimization
 - AI
 - ...

A few special types of graphs

- We've seen binary trees:
 - Trees are a special type of graphs
 - And binary trees are a special type of trees
 - Tree = undirected connected graph with no cycle
 - Connected: Path from every node to every other node
 - Cycle: No "loops": You can't get from a node back to itself without re-using an edge you already traversed

A few special types of graphs

- Forest:
 - Multiple trees
 - This one has 3

Directed Acyclic Graphs (DAGs)

- Directed graph with no cycle
 - Following edge directions: may look like it has loops ignoring the directions
 - Very common/useful
 - Ubiquitous in situations with dependencies
 - E depends on B and C

Directed Acyclic Graphs (DAGs)

- DAGs and computer architecture/compilers
 - Dataflow graph
 - Dependences between instructions
 - Could weight edges based on execution latency
 - Compilers use this for scheduling instructions

A: ld [r1] -> r2
B: ld 4[r2] -> r3
C: ld 8[r2] -> r4
D: ld 12[r2] -> r5
E: addi r3 + s4 -> r6
F: addi r5 + 4 -> r7
G: negi r5 -> r8
H: addi r6 + 4 -> r1
I: mul r7 * r8 -> r9
J: stw [r1] <- r9
• Operations we might want:
 • `void add_node(n)` //maybe `void del_node(n)` too
 • `void add_edge(n1, n2, weight)`
 • If weighted, if not, no weight
 • Directed? Adds on direction `n1 -> n2`
 • Undirected: `n1 <-> n2`

How might we implement this?

Implementation 1: Adjacency Matrix

• One approach:
 • Adjacency matrix:
 • Row per node (“from”)
 • Column per node (“to”)
 • Entry is weight along that edge
Implementation 1: Adjacency Matrix

Adjacency Matrix

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>oo</td>
<td>oo</td>
<td>2</td>
<td>3</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>oo</td>
<td>oo</td>
<td>7</td>
<td>oo</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>1</td>
<td>4</td>
<td>oo</td>
</tr>
<tr>
<td>D</td>
<td>oo</td>
<td>7</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>E</td>
<td>oo</td>
<td>oo</td>
<td>4</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>F</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>17</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
<td>oo</td>
</tr>
</tbody>
</table>

- How must space does this take and fast are these? \(O(V^2)\)
 - void add_node(n) //maybe void del_node(n) too \(O(V)\)
 - void add_edge(n1, n2, weight) \(O(1)\)
 - int get_edge_weight(n1, n2) //infinity if no edge \(O(1)\)
 - bool has_edge(n1, n2) //if no weights
 - Set<Node> get_adjacent_nodes(n) \(O(V)\) or \(O(1)\)

Adjacency List

- Each node holds a list (vector, array, linked list) of edges
 - Each edge has the weight and a pointer to the "to" node

- How must space does this take and fast are these? \(O(V+E)\)
 - void add_node(n) \(O(1)\) //maybe void del_node(n) too \(O(V+E)\)
 - void add_edge(n1, n2, weight) \(O(1)\)
 - int get_edge_weight(n1, n2) //infinity if no edge \(O(1)\)
 - bool has_edge(n1, n2) //if no weights
 - Set<Node> get_adjacent_nodes(n) \(O(V)\) or \(O(1)\)

Adjacency List

- Each node holds a list (vector, array, linked list) of edges
 - Each edge has the weight and a pointer to the "to" node

 Might be able to improve with Adjacency Tree or Hash Table?
 (Really, each "from" node is storing a map from "to" Nodes -> weights)

- How must space does this take and fast are these? \(O(V+E)\)
 - void add_node(n) \(O(1)\) //maybe void del_node(n) too \(O(V+E)\)
 - void add_edge(n1, n2, weight) \(O(1)\)
 - int get_edge_weight(n1, n2) //infinity if no edge \(O(1)\)
 - bool has_edge(n1, n2) //if no weights
 - Set<Node> get_adjacent_nodes(n) \(O(V)\) or \(O(1)\)
Graphs: our plans for them

- Rest of today: a few things you should be conversant in
 - Traveling Salesperson
 - NP completeness
 - Graph coloring

- Next two lectures:
 - Depth First Search (DFS)
 - Breadth First Search (BFS)
 - Dijkstra's Shortest Path Algorithm
 - Minimum Spanning Tree
 - Strongly Connected Components
 - Topological Sort (DAGs)

Traveling Salesperson

- Need to travel to some cities to make sales
 - Start at home (e.g., RDU) and return there
 - Visit each city once
 - Want to minimize cost of entire trip (know cost between each pair)

 ![Diagram showing the cost between different cities]

- How would you do this?
 - What would your algorithm look like?
 - What would its runtime be?

- Exhaustive search: try all possibilities
 - Runtime?

 \[8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40,320\] not bad...

 Expand it to 20 cities?
 \[19 \times 18 \times \ldots = 19!\] Can someone work that out really quickly for me?
Traveling Salesperson

- Exhaustive search: try all possibilities
 - Runtime: start/end city is fixed
 - Then 8 choices for 1st city
 - Each of those leaves 7 for the 2nd...
 - \(8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40,320\) not bad...
 - Expand it to 20 cities?
 - \(19 \times 18 \times 17 \times 16 \times \ldots = 19! = 24,329,020,081,766,400\)
 - Can someone work that out really quickly for me?
 - That's 24.3 quadrillion (i.e., 24,329 trillion)
 - If our computer can do 1 Billion possible options per second, how long will this take?

Expand it to 20 cities?

- \(19 \times 18 \times 17 \times 16 \times \ldots = 19! = 24,329,020,081,766,400\)
- Can someone work that out really quickly for me?
- That's 24.3 quadrillion (i.e., 24,329 trillion)
- If our computer can do 1 Billion possible options per second, how long will this take?
 - About 9 months (plan your trip well in advance)
 - Adding one more city => 20x as long => 15 years

TSP: continued

- Ok, so our first algorithm only works for ~10 cities
 - How much traveling do we really want to do?
 - Can we do better?

TSP: continued

- Ok, so our first algorithm only works for ~10 cities
 - How much traveling do we really want to do?
 - Actual traveling on a plan: maybe this is fine
 - But other real problems are the "same" math problem
 - Can we do better?

TSP: continued

- Ok, so our first algorithm only works for ~10 cities
 - How much traveling do we really want to do?
 - Actual traveling on a plan: maybe this is fine
 - But other real problems are the "same" math problem
 - Can we do better?
 - Ok, so we thought about this for 5 minutes, maybe if we think harder, we'll come up with a nice fast algorithm...
 - No, we probably won't do better than exponential 😞
NP Completeness

- There is a very large (and very useful) class of NP complete problems
 - To be precise: these are decision problems (yes/no answer)
 - TSP as a decision problem: is there a travel plan with cost at most N?
 - Best known algorithm: exponential time
 - Many very smart people have tried to come up with better
 - A "yes" answer can be verified in polynomial time with some (polynomial amount of) extra information
 - E.g., "look here is a path of cost N"
 - Solving one problem in polynomial time, solves them ALL!
 - Even though very diverse

Two non-graph NP-complete problems

- Bin packing:
 - Have many suitcases of fixed volume
 - Need to pack lots of stuff in them
 - Want to minimize number of suitcases used
- Knapsack problem:
 - Have only one suitcase (with fixed volume)
 - Can assign a value (importance) to your items
 - Pick set of items to pack that
 - Fits in suitcase
 - Maximizes total value

Graph Coloring

- Back to graphs (and not travel related):
 - Graph coloring
 - Color each node so that no two adjacent nodes are the same color
 - Use as few colors as possible (here: 4)

Also NP complete

- Decision problem: Can a graph be k colored?
 - Can this one be four colored: yes (see above)
 - Can this one be three colored: no

Graph Coloring Applications

- Graph Coloring:
 - Common in resource allocation problems
 - Node = thing that uses resource
 - Edge = conflict between uses of same resource
 - Color = resource

- Valid coloring:
 - No conflicting uses of same resource
 - Adjacent nodes different colors
- Few colors:
 - Use fewer resources
- Example: compilers allocate registers
 - Variables can't be in use at same time if in same register

Graphs: Searching

- Next time: graph search
 - Finding a path from one node to another.