What have we been talking about?
• What did we talk about last time?
 • Heaps
 • Priority Queues
 • Huffman coding
 • Compression
 • Application of Priority Queues

Today: Sorting
• Today is all about sorting
 • Many sorting algorithms
 • Generally $O(N \log(N))$ to $O(N^2)$ in complexity
 • No hats involved

Sorting: Big picture
• Have a bunch of data, want to put it in order
 • Ascending: smallest to largest
 • Descending: largest to smallest
 • Doesn’t really matter which way, same algorithms work
• Why would we want to do this?
 • Makes finding things faster/easier
 • Frequently more efficient to spend up front time to sort first
 • Think about handing back your exams
 • May make other queries easier
 • Median, Quartiles, etc…
• Our focus: sorting ints
 • Can sort anything that is totally ordered

Today: Sorting
• Today is all about sorting
 • Many sorting algorithms
 • Generally $O(N \log(N))$ to $O(N^2)$ in complexity
 • No hats involved

Sorting: Big picture
• Have a bunch of data, want to put it in order
 • Ascending: smallest to largest
 • Descending: largest to smallest
 • Doesn’t really matter which way, same algorithms work
• Why would we want to do this?
 • Makes finding things faster/easier
 • Frequently more efficient to spend up front time to sort first
 • Think about handing back your exams
 • May make other queries easier
 • Median, Quartiles, etc…
• Our focus: sorting ints
 • Can sort anything that is totally ordered

What have we been talking about?
• What did we talk about last time?
 • Heaps
 • Priority Queues
 • Huffman coding
 • Compression
 • Application of Priority Queues

Today: Sorting
• Today is all about sorting
 • Many sorting algorithms
 • Generally $O(N \log(N))$ to $O(N^2)$ in complexity
 • No hats involved

Sorting: Big picture
• Have a bunch of data, want to put it in order
 • Ascending: smallest to largest
 • Descending: largest to smallest
 • Doesn’t really matter which way, same algorithms work
• Why would we want to do this?
 • Makes finding things faster/easier
 • Frequently more efficient to spend up front time to sort first
 • Think about handing back your exams
 • May make other queries easier
 • Median, Quartiles, etc…
• Our focus: sorting ints
 • Can sort anything that is totally ordered

Today: Sorting
• Today is all about sorting
 • Many sorting algorithms
 • Generally $O(N \log(N))$ to $O(N^2)$ in complexity
 • No hats involved

Sorting: Big picture
• Have a bunch of data, want to put it in order
 • Ascending: smallest to largest
 • Descending: largest to smallest
 • Doesn’t really matter which way, same algorithms work
• Why would we want to do this?
 • Makes finding things faster/easier
 • Frequently more efficient to spend up front time to sort first
 • Think about handing back your exams
 • May make other queries easier
 • Median, Quartiles, etc…
• Our focus: sorting ints
 • Can sort anything that is totally ordered
Bubble Sort

- Simple algorithm:
 - Compare element i to element $i+1$
 - Out of order? Swap them
 - Repeat for N-1 of the N elements
 - Repeat all of that until no change
 - Max of N times

Bubble Sort

- Has to repeat several more times to bubble 2 down
 - Called Bubble Sort because elements "bubble up" the array
- What is its running time?
 - $O(N^2)$

Selection Sort

- Also a simple algorithm:
 - Find the smallest element
 - If it's not the first element, swap with first element
 - Recursively selection sort the remaining elements

Pros:
- Quick and easy to implement
- Simple to understand
- Works well on arrays or LLs (sort the data, keep the nodes in place)
- No space overhead
Cons:
- $O(N^2) = \text{slow for large data}$
Selection Sort

- And so on...
 - Running time?
 - $O(\text{???})$

- Running time:
 - Also $O(N^2)$
 - For each array spot, we need to find the min of N elements
 - N times
 - Finding min of N things
- Similar pros and cons to Bubble Sort

Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions

- Kind of in-efficient on arrays
 - Insert = copy all greater elements over
 - Doesn’t affect O though—still $O(N^2)$
 - Great for LLs, especially if you want to make a new one

Linked Lists:
- Iterate down original list
- sorted_insert onto new list
Insertion Sort

- Linked Lists:
 - Iterate down original list
 - sorted_insert onto new list

- Still $O(N^2)$

$O(N^2)$ sorting

- For $O(N^2)$ let’s start by revisiting selection sort
 - N times of
 - Find min of N things
 - Can do better if we can find the min faster than $O(N)$.

- Sound familiar?

Heap Sort

- A quick note on ordering
 - A min heap (smallest on top) gives descending order
 - A max heap (largest on top) gives ascending order

- We will do a min heap/descending order

Heap Sort

- Conceptually putting into Heap
 - But...
 - How are heaps actually implemented?

- Conceptually putting into Heap
 - But...
 - How are heaps actually implemented?
 - Arrays
 - So kind of silly to use a separate one
 - Just use original (constant space)
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

• Start by turning input into a heap
 • Boundary between
 • Heap (left)
 • Not-a-heap (right)
 • Moving boundary
 • Just like adding to heap
 • Bubble up as needed

Heap Sort

• Now, go backwards through array
 • Boundary now
 • Heap (left)
 • Sorted array (right)
 • Move boundary:
 • Delete min
 • Put into newly vacated spot

Heap Sort

• May need to bubble down

Heap Sort

• May need to bubble down
 • Then repeat
Heap Sort

- May need to bubble down
 - Then repeat

ECE 590.01 (Hilton): Sorting

49

50

51

52

53

54
Heap Sort

Pros
- In place
- $O(N \times \log(N))$ — as good as it gets in the general case
- Average AND worst case

Cons
- Bad locality, especially on large data
- Bad cache behavior
- Index 10,000 and its children (20,000 and 20,001) are 10K items apart
- Almost certainly on different pages
- Only in place for arrays
- Want to use on an LL? Make an explicit separate heap

Merge Sort

- Split in half
- Sort each half
- Recursively merge sort
- Small array (< 4 or 8 elements): use some other sort
- Merge the results
- Splitting done by indices, not copying

Merge Sort

$$ \text{Mergesort}(0, 7) = \text{Mergesort}(0, 3); $$
$$ \text{Mergesort}(4, 7); $$
$$ \text{Merge}(0, 4, 7); $$

- Assume Mergesort(0, 1) and Mergesort(2, 3) use a trivial sort
 - Sorting 2 elements is quite easy
 - Now need to merge

Merge(a, b, end)

- Requires extra space to merge into
- Easy to compute “end2” = b - 1

```
[ ]   [ ]   [ ]
```

- Merge(a, b, end)
 - Requires extra space to merge into
 - Easy to compute “end2” = b - 1
 - Pick smaller of array[a] and array[b]
 - Copy into temp[next]
 - Increment a or b (whichever was used)
 - Increment next

```
[ ]   [ ]   [ ]
```
Merge Sort

- **Merge(a,b,end)**
 - Requires extra space to merge into
 - Easy to compute \("end2" = b - 1 \)
 - Pick smaller of \(\text{array}[a] \) and \(\text{array}[b] \)
 - Copy into \(\text{temp}[\text{next}] \)
 - Increment \(a \) or \(b \) (whichever was used)
 - Increment next

Merge Sort

- **Merge(a,b,end)**
 - Whenever \(b \) goes past \(end \)
 - Or \(a \) goes past \(end2 \)
 - Done with that half, just copy from other half into temp

Merge Sort

- **Merge(a,b,end)**
 - Whenever \(b \) goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
Merge Sort

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Mergesort(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Mergesort(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
 - That concludes the merge

The recursion returns back to Mergesort(0,7)
- Next thing here is Mergesort(4,7)
- Recursively go do that

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Mergesort(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Mergesort(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
 - That concludes the merge
 - Which also concludes the Mergesort(0,3) call (0—3 are sorted)

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Mergesort(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Mergesort(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
 - That concludes the merge
 - Which also concludes the Mergesort(0,3) call (0—3 are sorted)

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Mergesort(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Mergesort(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
 - That concludes the merge

The recursion returns back to Mergesort(0,7)
- Next thing here is Mergesort(4,7)
- Recursively go do that
- Not shown:
 - But you trust recursion right?
 - So now we just need to merge

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Mergesort(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Mergesort(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
 - That concludes the merge
 - Which also concludes the Mergesort(0,3) call (0—3 are sorted)
Merge Sort

Mergesort(0,7) = Mergesort(0,3); Mergesort(4,7); Mergesort(0,4.7);

- Merge

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 1 & 3 & 7 & 8 & 0 & 2 & 5 & 9 \\
\end{array}
\]

- Merge

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 6 & 1 & 2 & \text{next} & & & & \\
\end{array}
\]

Mergesort(0,7) = Mergesort(0,3); Mergesort(4,7); Mergesort(0,4.7);

- Merge

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 1 & 3 & 7 & 8 & 0 & 2 & 5 & 9 \\
\end{array}
\]

- Merge

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 0 & 1 & 2 & 3 & \text{next} & & & \\
\end{array}
\]

Mergesort(0,7) = Mergesort(0,3); Mergesort(4,7); Mergesort(0,4.7);

- Merge

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 1 & 3 & 7 & 8 & 0 & 2 & 5 & 9 \\
\end{array}
\]

- Merge

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 0 & 1 & 2 & 3 & 5 & \text{next} & & \\
\end{array}
\]
Merge Sort

Quick Sort

Quick Sort

Quick Sort
Quick Sort

- Step 1: pick a pivot
 - Always pick last element?
 - Leads to bad performance if array is already (almost) sorted
 - Good choice: random index
 - I picked index 4 (value = 5)

- Step 2:
 - Get elements less than pivot (5) on left, greater on right

Quick Sort

- Step 2:
 - Get elements less than pivot (5) on left, greater on right
 - Swap pivot into last slot

Quick Sort

- When array[lo] < pivot and array[hi] >= pivot
 - Swap(lo, hi)
 - Increment lo
 - Decrement hi
 - Keep going

Quick Sort

- Now array[lo] < pivot, so we keep scanning
 - Incrementing low and re-checking

Quick Sort

- Now array[lo] >= pivot, so we stop, and work on hi
 - Array[hi] >= pivot, so we need to scan right
Quick Sort

Now array[hi] < pivot, so we stop, and swap

Increment lo

Decrement hi

Continue

Lo scans right

Hi scans left (doesn't go anywhere)

Now, since lo > hi (the pointers have crossed)
- We don't swap
- Instead, we swap(lo,pivot)
- Pivot's new index at the end

At this point
- All items smaller than 5 are to its left
- All items larger than 5 are to its right
- 5 is in the correct place
- Now we make two recursive quick sort calls
- One sorts the left
- The other sorts the right

At this point
- All items smaller than 5 are to its left
- All items larger than 5 are to its right
- 5 is in the correct place
- Now we make two recursive quick sort calls
- One sorts the left
- The other sorts the right
Quick Sort Performance

- What is the Big-O of quick sort?
 - Worst Case: $O(N^2)$
 - Always pick largest/smallest (or close) element?
 - Will effectively sort 1 element each recursion
 - Average Case: $O(N \cdot \log(N))$
 - Pick elements somewhere near the middle mostly?
 - Will cut array roughly in half each time

Quick Sort Pros and Cons

- Pros
 - Usually $O(N \cdot \log(N))$
 - Good locality (cache behavior)
 - Sorts array in place
- Cons
 - Can be $O(N^2)$
 - Requires extra space for recursive call stack

Other sorting things

- Some sorts are **stable**, some are not
 - Stable sort = equal elements stay in the same order
 - Some sorts are stable, some are not
 - Which of these are stable? I’ll leave that to you...
- $O(N \cdot \log(N))$ is provable best O for sorting without special prior knowledge
 - Can do better if you know some constraints on the data
 - Limited ranges
 - The input array will already be sorted...

Sorting Summary

- Sorting
 - So many ways to do it
 - We didn’t even start to cover them all
 - Did cover a bunch
 - Bubble
 - Insertion
 - Selection
 - Heap
 - Quick
 - These are the most common ones
 - Really good to know for interviews
 - Along with their Big-O, and other pros and cons