ECE 590.01
C++ Programming, Data structures, and Algorithms

Sorting
Admin

• Reading
 • Chapter 7
 • After the break: Chapter 9
 • Skipping 8 (optional reading if you want)

• Homework 3 due Friday
What have we been talking about?

- What did we talk about last time?
What have we been talking about?

- What did we talk about last time?
 - Heaps
 - Priority Queues
 - Huffman coding
 - Compression
 - Application of Priority Queues
Today: Sorting

- Today is all about sorting
 - Many sorting algorithms
 - Generally $O(N \log(N))$ to $O(N^2)$ in complexity
 - No hats involved
Sorting: Big picture

- Have a bunch of data, want to put it in order
 - Ascending: smallest to largest
 - Descending: largest to smallest
- Doesn’t really matter which way, same algorithms work

- Why would we want to do this?
 - Makes finding things faster/easier
 - Frequently more efficient to spend up front time to sort first
 - Think about handing back your exams
 - May make other queries easier
 - Median, Quartiles, etc...
- Our focus: sorting ints
 - Can sort anything that is totally ordered
Bubble Sort

- **Simple algorithm:**
 - Compare element i to element $i+1$
 - Out of order? Swap them
 - Repeat for N-1 of the N elements
 - Repeat all of that until no change
 - Max of N times
Bubble Sort

- Simple algorithm:
 - Compare element i to element $i+1$
 - Out of order? Swap them
 - Repeat for $N-1$ of the N elements
 - Repeat all of that until no change
 - Max of N times

```
3  7  1  5  9  2
```
Bubble Sort

- Simple algorithm:
 - Compare element i to element i+1
 - Out of order? Swap them
 - Repeat for N-1 of the N elements
 - Repeat all of that until no change
 - Max of N times

3 1 7 5 9 2
Bubble Sort

• Simple algorithm:
 • Compare element i to element $i+1$
 • Out of order? Swap them
 • Repeat for N-1 of the N elements
 • Repeat all of that until no change
 • Max of N times

\[\begin{array}{cccccc}
 3 & 1 & 5 & 7 & 9 & 2 \\
\end{array}\]
Bubble Sort

• Simple algorithm:
 • Compare element i to element i+1
 • Out of order? Swap them
 • Repeat for N-1 of the N elements
 • Repeat all of that until no change
 • Max of N times
Bubble Sort

Simple algorithm:
- Compare element \(i \) to element \(i+1 \)
- Out of order? Swap them
- Repeat for \(N-1 \) of the \(N \) elements
- Repeat all of that until no change
 - Max of \(N \) times
Bubble Sort

- Has to repeat several more times to bubble 2 down
 - Called Bubble Sort because elements “bubble up” the array

- What is its running time?
 - $O(??)$
Bubble Sort

- What is its running time?
 - $O(N^2)$ generally
 - Can “get lucky” and do better:
 - Input array is already sorted? $O(N)$
Bubble Sort

- **Pros:**
 - Quick and easy to implement
 - Simple to understand
 - Works well on arrays or LLs (sort the data, keep the nodes in place)
 - No space overhead

- **Cons:**
 - $O(N^2)$ = slow for large data
Selection Sort

- Also a simple algorithm:
 - Find the smallest element
 - If it's not the first element, swap with first element
 - Recursively selection sort the remaining elements
Selection Sort

- Also a simple algorithm:
 - Find the smallest element
 - If it's not the first element, swap with first element
 - Recursively selection sort the remaining elements
Selection Sort

- Also a simple algorithm:
 - Find the smallest element
 - If it's not the first element, swap with first element
 - Recursively selection sort the remaining elements
Selection Sort

• And so on...
 • Running time?
 • $O(???)$
Selection Sort

- Running time:
 - Also $O(N^2)$
 - For each array spot, we need to find the min of N elements
 - N times of
 - Finding min of N things
- Similar pros and cons to Bubble Sort
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions

1 3 5 7 9 2
Insertion Sort

- Divide Array into two regions
 - Sorted region (starts out with one element)
 - Invariant: sorted region is sorted
 - Unsorted region (everything else)
 - Make progress: move next item from unsorted region to sorted
 - Insert into region by finding correct place in ordering
 - Moves boundary between regions
Insertion Sort

- Kind of in-efficient on arrays
 - Insert = copy all greater elements over
 - Doesn’t affect O though—still $O(N^2)$
 - Great for LLs, especially if you want to make a new one

1 2 3 5 7 9
Insertion Sort

- **Linked Lists:**
 - Iterate down original list
 - sorted_insert onto new list
Insertion Sort

- **Linked Lists:**
 - Iterate down original list
 - `sorted_insert` onto new list

```plaintext
unsorted\n 3 → 7 → 1 → 5 → 9 → 2\ncurr
```

```plaintext
sorted\n 3
```
Insertion Sort

- Linked Lists:
 - Iterate down original list
 - sorted_insert onto new list
Insertion Sort

- Linked Lists:
 - Iterate down original list
 - sorted_insert onto new list

- Still $O(N^2)$
O(N*lg(N)) sorting

- For O(N*lg(N)) let’s start by revisiting selection sort
 - N times of
 - Find min of N things
- Can do better if we can find the min faster than O(N).

- Sound familiar?
O(N*lg(N)) sorting

- For O(N*lg(N)) let’s start by revisiting selection sort
 - N times of
 - Find min/max of N things
- Can do better if we can find the min faster than O(N)

- Sound familiar?
 - Heaps let us findMin/findMax in O(1) time
 - And delete it in O(lg(N)) time
- Concept:
 - Put everything in a heap
 - Repeatedly extract min/max, put into array
 - Profit!
Heap Sort

• A quick note on ordering
 • A min heap (smallest on top) gives descending order
 • A max heap (largest on top) gives ascending order

• We will do a min heap/descending order
Heap Sort

- Conceptually putting into Heap
 - But...
 - How are heaps actually implemented?
Heap Sort

• Conceptually putting into Heap
 • But...
 • How are heaps actually implemented?
 • Arrays
 • So kind of silly to use a separate one
 • Just use original (constant space)
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Start by turning input into a heap
 - Boundary between
 - Heap (left)
 - Not-a-heap (right)
 - Moving boundary
 - Just like adding to heap
 - Bubble up as needed
Heap Sort

- Now, go backwards through array
 - Boundary now
 - Heap (left)
 - Sorted array (right)
- Move boundary:
 - Delete min
 - Put into newly vacated spot
Heap Sort

- Now, go backwards through array
 - Boundary now
 - Heap (left)
 - Sorted array (right)
 - Move boundary:
 - Delete min
 - Put into newly vacated spot
Heap Sort

- May need to bubble down
Heap Sort

- May need to bubble down
 - Then repeat
Heap Sort

- May need to bubble down
 - Then repeat
Heap Sort

- May need to bubble down
 - Then repeat
Heap Sort

- May need to bubble down
 - Then repeat
Heap Sort

• May need to bubble down
 • Then repeat
Heap Sort

- May need to bubble down
 - Then repeat
Heap Sort

- May need to bubble down
 - Then repeat
Heap Sort

- May need to bubble down
 - Then repeat

- Etc

9 7 5 3 2 1
Heap Sort

- **Pros**
 - In place
 - $O(N \times \lg(N))$ — as good as it gets in the general case
 - Average AND worst case

- **Cons**
 - Bad locality, especially on large data
 - Bad cache behavior
 - Bad paging behavior
 - Index 10,000 and its children (20,000 and 20,001) are 10K items apart
 - Almost certainly on different pages
 - Only in place for arrays
 - Want to use on an LL? Make an explicit separate heap
Merge Sort

- Split array in half
 - Sort each half
 - Recursively merge sort
 - Small array (< 4 or 8 elements): use some other sort
 - Merge the results
- Splitting done by indices, not copying

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

\[
\begin{array}{cccccccc}
8 & 3 & 7 & 1 & 5 & 9 & 2 & 0 \\
\end{array}
\]
Merge Sort

- Split array in half
 - Sort each half
 - Recursively merge sort
 - Small array (< 4 or 8 elements): use some other sort
 - Merge the results
- Splitting done by indices, not copying

\[
\begin{align*}
\text{Mergesort}(0,7) &= \\
&= \text{Mergesort}(0,3); \\
&\quad \text{Mergesort}(4,7); \\
&\quad \text{Merge}(0,4,7); \\
\text{Mergesort}(0,3) &= \\
&= \text{Mergesort}(0,1); \\
&\quad \text{Mergesort}(2,3); \\
&\quad \text{Merge}(0,2,3);
\end{align*}
\]
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);
Mergesort(0,3) =
 Mergesort(0,1);
 Mergesort(2,3);
 Merge(0,2,3);

- Assume Mergesort(0,1) and Mergesort(2,3) use a trivial sort
 - Sorting 2 elements is quite easy
 - Now need to merge
Merge Sort

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Merge(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Merge(0,2,3);

- Merge(a,b,end)
 - Requires extra space to merge into
 - Easy to compute “end2” = b - 1
Merge Sort

\[
\begin{align*}
\text{Mergesort}(0,7) &= \\
&= \text{Mergesort}(0,3); \\
&= \text{Mergesort}(4,7); \\
&= \text{Merge}(0,4,7); \\
\text{Mergesort}(0,3) &= \\
&= \text{Mergesort}(0,1); \\
&= \text{Mergesort}(2,3); \\
&= \text{Merge}(0,2,3);
\end{align*}
\]

- Merge(a, b, end)
 - Requires extra space to merge into
 - Easy to compute “end2” = b – 1
 - Pick smaller of array[a] and array[b]
 - Copy into temp[next]
 - Increment a or b (whichever was used)
 - Increment next
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

Mergesort(0,3) =
 Mergesort(0,1);
 Mergesort(2,3);
 Merge(0,2,3);

- Merge(a,b,end)
 - Requires extra space to merge into
 - Easy to compute “end2” = b – 1
 - Pick smaller of array[a] and array[b]
 - Copy into temp[next]
 - Increment a or b (whichever was used)
 - Increment next
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

Mergesort(0,3) =
 Mergesort(0,1);
 Mergesort(2,3);
 Merge(0,2,3);

- Merge(a,b,end)
 - Requires extra space to merge into
 - Easy to compute “end2” = b – 1
 - Pick smaller of array[a] and array[b]
 - Copy into temp[next]
 - Increment a or b (whichever was used)
 - Increment next
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

Mergesort(0,3) =
 Mergesort(0,1);
 Mergesort(2,3);
 Merge(0,2,3);

- Merge(a, b, end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp

ECE 590.01 (Hilton): Sorting
Merge Sort

- Mergesort(0,7) =
 - Mergesort(0,3);
 - Mergesort(4,7);
 - Merge(0,4,7);

- Mergesort(0,3) =
 - Mergesort(0,1);
 - Mergesort(2,3);
 - Merge(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp

ECE 590.01 (Hilton): Sorting
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

Mergesort(0,3) =
 Mergesort(0,1);
 Mergesort(2,3);
 Merge(0,2,3);

• Merge(a,b,end)
 • Whenever b goes past end
 • Or a goes past end2
 • Done with that half, just copy from other half into temp
 • Now copy temp back into main array

ECE 590.01 (Hilton): Sorting
Merge Sort

- **Mergesort(0,7) =**
 - Mergesort(0,3);
 - Mergesort(4,7);
 - Merge(0,4,7);

- **Mergesort(0,3) =**
 - Mergesort(0,1);
 - Mergesort(2,3);
 - Merge(0,2,3);

- **Merge(a,b,end)**
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
Merge Sort

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Merge(0,4,7);

Mergesort(0,3) =
Mergesort(0,1);
Mergesort(2,3);
Merge(0,2,3);

- Merge(a,b,end)
 - Whenever b goes past end
 - Or a goes past end2
 - Done with that half, just copy from other half into temp
 - Now copy temp back into main array
 - That concludes the merge
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

Mergesort(0,3) =
 Mergesort(0,1);
 Mergesort(2,3);
 Merge(0,2,3);

• Merge(a,b,end)
 • Whenever b goes past end
 • Or a goes past end2
 • Done with that half, just copy from other half into temp
 • Now copy temp back into main array
 • That concludes the merge
 • Which also concludes the Mergesort(0,3) call (0—3 are sorted)
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

• The recursion returns back to Mergesort(0,7)
 • Next thing here is Mergesort(4,7)
 • Recursively go do that
Merge Sort

Mergesort(0, 7) =
 Mergesort(0, 3);
 Mergesort(4, 7);
 Merge(0, 4, 7);

- The recursion returns back to Mergesort(0, 7)
 - Next thing here is Mergesort(4, 7)
 - Recursively go do that
 - Not shown:
 - But you trust recursion right?
 - So now we just need to merge
Merge Sort

\[
\text{Mergesort}(0,7) = \\
\text{Mergesort}(0,3); \\
\text{Mergesort}(4,7); \\
\text{Merge}(0,4,7);
\]

- Merge
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

- Merge

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
</table>

next
Merge Sort

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Merge(0,4,7);

- Merge
Merge Sort

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Merge(0,4,7);

• Merge

ECE 590.01 (Hilton): Sorting
Merge Sort

\[\text{Mergesort}(0,7) = \text{Mergesort}(0,3); \]
\[\text{Mergesort}(4,7); \]
\[\text{Merge}(0,4,7); \]

- Merge
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

• Merge
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

- Merge
Merge Sort

Mergesort(0,7) =
 Mergesort(0,3);
 Mergesort(4,7);
 Merge(0,4,7);

• Merge
 • Note we took from left side twice in a row
 • That’s fine, happens all the time (may take many from one side)
Merge Sort

\[\text{Mergesort}(0,7) = \]
\[\text{Mergesort}(0,3); \]
\[\text{Mergesort}(4,7); \]
\[\text{Merge}(0,4,7); \]

- **Merge**
 - a is past the end of its half now, so copy in from right side (b’s side)
Merge Sort

Mergesort(0,7) =
Mergesort(0,3);
Mergesort(4,7);
Merge(0,4,7);

- Merge
 - Copy back into original array, and done with merge
Merge Sort

\[
\text{Mergesort}(0,7) = \\
\text{Mergesort}(0,3); \\
\text{Mergesort}(4,7); \\
\text{Merge}(0,4,7);
\]

- Now done with Mergesort(0,7), so whole array is sorted
Merge Sort: Pros and Cons

• Pros:
 • Good locality
 • $O(N \times \lg(N))$: average and worst case
 • Easy to parallelize:
 • Great for having TAs sort tests by last name

• Cons:
 • Requires extra space (not done in places) for arrays
 • Linked Lists require work to find halfway through
 • But can be merged with no extra space
Quick Sort

- Step 1: pick a pivot
 - Always pick last element?
 - Leads to bad performance if array is already (almost) sorted
 - Good choice: random index
Quick Sort

- Step 1: pick a pivot
 - Always pick last element?
 - Leads to bad performance if array is already (almost) sorted
 - Good choice: random index
 - I picked index 4 (value = 5)
Quick Sort

- Step 1: pick a pivot
 - Always pick last element?
 - Leads to bad performance if array is already (almost) sorted
 - Good choice: random index
 - I picked index 4 (value = 5)
- Step 2:
 - Get elements less than pivot (5) on left, greater on right
Quick Sort

• Step 2:
 • Get elements less than pivot (5) on left, greater on right
 • Swap pivot into last slot
Quick Sort

- Step 2:
 - Get elements less than pivot (5) on left, greater on right
 - Swap pivot into last slot
 - Track two indices
 - Lo starts at 0, moves right
 - Scan for element larger than pivot
 - Hi starts at last spot before pivot, moves left
 - Scan for element smaller than pivot
Quick Sort

- When array[lo] < pivot and array[hi] >= pivot
 - Swap(lo, hi)
 - Increment lo
 - Decrement hi
 - Keep going
Quick Sort

- Now array[lo] < pivot, so we keep scanning
 - Incrementing low and re-checking
Quick Sort

Now array[lo] >= pivot, so we stop, and work on hi
Array[hi] >= pivot, so we need to scan right
Quick Sort

- Now array[hi] < pivot, so we stop, and swap
Quick Sort

- Now array[hi] < pivot, so we stop, and swap
 - Increment lo
 - Decrement hi
 - Continue
Quick Sort

- Lo scans right
Quick Sort

- Lo scans right
- Hi scans left (doesn’t go anywhere)

- Now, since lo > hi (the pointers have crossed)
 - We don’t swap
 - Instead, we swap(lo,pivot)
 - Pivot’s new index at the end
Quick Sort

- Lo scans right
- Hi scans left (doesn’t go anywhere)

- Now, since lo > hi (the pointers have crossed)
 - We don’t swap
 - Instead, we swap(lo,pivot)
 - Pivot’s new index at the end
Quick Sort

- At this point
 - All items smaller than 5 are to its left
 - All items larger than 5 are to its right
 - 5 is in the correct place
- Now we make two recursive quick sort calls
 - One sorts the left
 - The other sorts the right
Quick Sort Performance

- What is the Big-O of quick sort?
Quick Sort Performance

- What is the Big-O of quick sort?
 - Worst Case: $O(N^2)$
 - Always pick largest/smallest (or close) element?
 - Will effectively sort 1 element each recursion
 - Average Case: $O(N \cdot \log(N))$
 - Pick elements somewhere near the middle mostly?
 - Will cut array roughly in half each time
Quick Sort Pros and Cons

• Pros
 • Usually $O(N \times \lg (N))$
 • Good locality (cache behavior)
 • Sorts array in place

• Cons
 • Can be $O(N^2)$
 • Requires extra space for recursive call stack
Other sorting things

• Some sorts are **stable**, some are not
 • Stable sort =equal elements stay in the same order
 • Some sorts are stable, some are not
 • Which of these are stable? I’ll leave that to you...

• $O(N^*\log(N))$ is provable best O for sorting without special prior knowledge
 • Can do better if you know some constraints on the data
 • Limited ranges
 • The input array will already be sorted...
Sorting Summary

- Sorting
 - So many ways to do it
 - We didn’t even start to cover them all
 - Did cover a bunch
 - Bubble
 - Insertion
 - Selection
 - Heap
 - Quick
 - These are the most common ones
 - Really good to know for interviews
 - Along with their Big-O, and other pros and cons