ECE 590.01
C++ Programming, Data structures, and Algorithms

Heaps and Priority Queues

Admin
- Reading
 - Chapters 6 + 7
- Midterm Graded
 - Stats on Piazza
- Homework 3: Due Friday

Talking about recently
- Recently, talking about Maps and Sets
 - Ubiquitous ADTs
 - Implementations
 - Linked Lists
 - Arrays
 - BSTs (possibly balanced)
 - Hash tables
- Before that: Stacks + Queues
 - Easy + efficient to implement with a LinkedList

Talking about recently
- Recently, talking about Maps and Sets
 - Ubiquitous ADTs
 - Implementations
 - Linked Lists
 - Arrays
 - BSTs (possibly balanced)
 - Hash tables
- Before that: Stacks + Queues
 - Easy + efficient to implement with a LinkedList
- Now, new ADT: Priority Queue
 - And how to implement it efficiently

Queue: FIFO
- Recall Queues: First in, First out
 - Enqueue: add to end of queue
 - Dequeue: take from front of queue

Queue: FIFO
- Recall Queues: First in, First out
 - void enqueue(T): add to end of queue
 - T dequeue(void): take from front of queue
 - T peek(void): look at front of queue
- Priority Queue: Best priority first
 - void enqueue(T, int): add with a given priority
 - T dequeue(void): take highest (or lowest) priority item
 - T peek(void): look at highest (or lowest) priority item
Priority Queue: Why?

- Why would we want this?
 - Job schedulers
 - Dijkstra's shortest path algorithm (after the break)
 - Huffman compression algorithm (today)
 - ...and many more...

Naive implementation

- Naive implementation:
 - Sorted Linked List
 - Enqueue = Sorted Insert: O(N)
 - Dequeue = Remove from Front: O(1)
 - Peek = Get Front: O(1)
 - Unsorted Linked List
 - Enqueue = Add to Front: O(1)
 - Dequeue = Remove Max [or Min]: O(N)
 - Peek = Find Max [or Min]: O(N)
- Better implementation:
 - Balanced BST
 - Enqueue = BST Add: O(lg N)
 - Dequeue = BST Remove: O(lg N)
 - Peek = Find Max [or Min]: O(lg N)

Heaps

- Heaps provide exactly what we want for Priority Queues
 - Many flavors, we will start with Binary Heaps
 - Tree-like structure, different rules than BST
 - Complete tree:
 - All levels (except maybe last) completely full
 - Last level has all nodes at left side
 - Each node is greater than its two children for a Max-Heap
 - Or less than for a Min-Heap

Naive implementation

- Can we do better?

Heaps

- Adding to a heap:
 - Place item in next open spot
 - Leftmost un-taken spot on unfilled row
 - Bubble up until heap ordering is restored
 - Swap with parent if greater
- Example: Add 88

Heaps

- Add 88
 - Place in first available spot
 - Violates ordering with respect to parent 88 > 13

Heaps

- Add 88
 - Place in first available spot
 - Violates ordering with respect to parent 88 > 13
 - Swap 13 with 88
 - Now 88 < 99, so done
- Now, you all add 75
Heaps

• Add 75
 • Place in first available spot
 • Violates ordering with respect to parent 75 > 1

Heaps

• Add 75
 • Place in first available spot
 • Violates ordering with respect to parent 75 > 1
 • Swap 1 and 75
 • 75 > 42, so still not done

Heaps

• Add 75
 • Place in first available spot
 • Violates ordering with respect to parent 75 > 1
 • Swap 1 and 75
 • 75 > 42, so still not done
 • Swap 75 and 42, done

Heaps

• Delete Max
 • Replace max item (top) with rightmost item in last level
 • Bubble down to fix heap
 • Swap with largest child when 2 children present

Heaps

• Delete Max
 • Remove 99 and replace it with 1 (removing 1 also)

Heaps

• Delete Max
 • Remove 99 and replace it with 1 (removing 1 also)
 • Now need to swap 1 with larger of its two children (88)
Heaps

- Delete Max
 - Remove 99 and replace it with 1 (removing 1 also)
 - Now need to swap 1 with larger of its two children (88)
 - Now swap 1 with 13

- Delete Max again
 - Remove 88 and replace it with 1 (removing 1 also)
 - Need to swap 1 with 75
 - Need to swap 1 with 42
Array Representation of Heaps

- Heaps: easily stored in arrays
 - No need for explicit pointers, just use math
 - Scheme 1: Root at index 0
 - Left at $2N + 1$
 - Right at $2N + 2$
 - Scheme 2: Root at index 1
 - Left at $2N$
 - Right at $2N + 1$

Heap enqueue

```cpp
class Heap {
private:
    int * data;
    int array_size;
    int last_element;
    void bubbleUp(int index) { ... }
public:
    void enqueue(int prio) {
        last_element++;
        if (last_element == array_size) {
            array_size = array_size * 2;
            data = realloc(array_size * sizeof(*data));
        }
        data[last_element] = prio;
        bubbleUp(last_element);
    }
}
```

Bubble up: Without Sentinel

```cpp
void bubbleUp(int index) {
    //check that we aren't at the top already
    if (index <= 1) {
        return;
    }
    //compute parent index
    int parent = index / 2;
    if (data[parent] < data[index]) {
        //swap parent and index
        int temp = data[parent];
        data[parent] = data[index];
        data[index] = temp;
        //bubble up parent
        bubbleUp(parent);
    }
}
```

Heap dequeue

```cpp
class Heap {
private:
    int * data;
    int array_size;
    int last_element;
    void bubbleDown(int index) { ... }
public:
    int dequeue() {
        int ans = data[1];
        data[1] = data[last_element];
        last_element--;
        bubbleDown(1);
        return ans;
    }
}
```

Bubble up: With Sentinel

```cpp
void bubbleUp(int index) {
    //Using Sentinel?  Don't need this check!
    if (index <= 1) {
        return;
    }
    //compute parent index
    int parent = index / 2;
    if (data[parent] < data[index]) {
        //swap parent and index
        int temp = data[parent];
        data[parent] = data[index];
        data[index] = temp;
        //bubble up parent
        bubbleUp(parent);
    }
}
```
Heap dequeue

```c
void bubbleDown(int index) {
    //How about you all try this one?
}
```

Heap dequeue

```c
void bubbleDown(int index) {
    int left = 2 * index;
    int right = 2 * index + 1;
    if (left > last_element) {
        return;
    }
    if (left == last_element) {
        //corner case: only have left child
        if (data[left] > data[index]) {
            swap(left, index);
        }
    }
    int maxidx = data[left] > data[right] ? left : right;
    if (data[maxidx] > data[index]) {
        swap(maxidx, index);
        bubbleDown(maxidx);
    }
}
```

Generality

- Can make templated PriorityQueue/Heap...
- Design choices and considerations
 - PQ of Ts: is priority part of T, or explicit/separate?
 - enqueue(T): use overloaded < on Ts to order
 - enqueue(T,int): order by ints, T does not need <
 - Priority is not an int? Using sentinel may be difficult
 - Ints are finite for computers:
 - INT_MAX = largest signed int
 - UINT_MAX = largest unsigned int
 - Strings are comparable, but not finite
 - Thing you have the largest string?
 - Add one letter to the end
 - Min heap may be easier, but requires programmer to know min value for type

Binary Heap vs Fancier Heaps

- We did “binary heap”
 - O(1) find min
 - O(lg N) insert
 - O(lg N) remove min
 - Fancier heaps exist
 - Binomial Heaps
 - Fibonacci Heaps
 - We aren’t going to do them, good to know they exist

Application: Compression

- Huffman coding (compression) easily implemented with PQ
- Algorithm works with (symbol, frequency) pairs
 - Symbol = letter = char
 - Frequency = count of how many = int
- Builds binary tree of symbols from bottom up
 - Not BST, just binary tree: no ordering
 - Built from min frequency first: use PQ for efficiency
 - Resulting tree tells encoding: path from root to symbol is its code
 - Left = 0
 - Right = 1

Huffman Motivation/Example

- Frequencies of symbols drastically different
 - a 5985
 - b 1276
 - c 4322
 - d 3046
 - e 13663
 - f 1901
 - g 1764
 - h 3631
 - i 6788
 - j 6788
 - k 16
 - l 76
 - m 166
 - n 3
 - o 53168
- Use short bit sequences for common syms, long for uncommon
Huffman Example

- Initial Heap (using . for space)
- Level 0: Z
- Level 1: j J
- Level 2: M Q X B
- Level 3: F H O U Y z C D
- Level 4: k q K G v P w X V A y n f o E
- Level 5: a p h I i r s L e u t N d S T b c g m W I

Tree building algorithm

- Then we run this algorithm:
 - P is a priority queue which orders Nodes by frequency
 - Leaf Nodes (just a symbol): that sym’s frequency
 - Internal Nodes: sum of leafs under it

while (p->count() >= 2) {
 Node * l = p->dequeue();
 Node * r = p->dequeue();
 Node * x = new Node(l, r);
 p->enqueue(x);
}

- At the end, p->dequeue() has the root of the tree

After one step

- Level 0: (Z, J)
- Level 1: Q
- Level 2: M U X B
- Level 3: F H O R Y z C D
- Level 4: k q K G v P w X V A y n f o E
- Level 5: a p h I i r s L e u t N d S T b c g m W I

After two steps

- Level 0: ((Z, J), j)
- Level 1: Q X
- Level 2: M U z B
- Level 3: F H O R Y A C D
- Level 4: k q K G v P w X V A y n f o E
- Level 5: a p h I i r s L e u t N d S T b c g m W

Final tree

- (Part of the) Final tree:
Reading off the encoding

- Now we build a map from symbols to bit strings
- Read the encoding off the binary tree by traversal

Final tree

- (Part of the) Final tree:

Huffman Coding continued

- Our less common symbols get very long strings
 - U = 0111101001
 - V = 1010000001
 - W = 1010000110
 - X = 00111110001
 - Y = 0111101101
 - Z = 00111110000000
 - J = 001111110000001
 - j = 001111100001
- For frequencies I used,
 - Average bits/symbol = 4.01446
 - Uncompressed, best we can do with ~64 symbols is 6 bits/sym
 - Saved 33% of the space

Huffman Decompression

- Decompression relies on the fact nothing is a prefix of anything else
 - Z = 00111111000000
 - J = 001111110000001
 - j = 001111110000001
- May share a common prefix (path through tree) with other symbols
 - But one symbol’s encoding may not be a prefix of another
 - J, j, and Z all start the same, but none is a prefix of the other
 - Easy to see this is true:
 - Symbols are at the leaves of the tree
 - Unique paths through the tree produce unique bit strings
 - Leaves are not on a prefix of any other path through the tree
Heaps and Sorting

- Heaps are also good for sorting
 - Maps and Sets: most ubiquitous ADTs
 - Searching and Sorting: most ubiquitous algorithms
- Heapsort: efficient sorting algorithm, using heaps
 - Next time: all about sorting