ECE 590.01
C++ Programming, Data structures, and Algorithms

Heaps and Priority Queues
Admin

- Reading
 - Chapters 6+ 7
- Midterm Graded
 - Stats on Piazza
- Homework 3: Due Friday
Talking about recently

- Recently, talking about Maps and Sets
 - Ubiquitous ADTs
 - Implementations
 - Linked Lists
 - Arrays
 - BSTs (possibly balanced)
 - Hash tables
- Before that: Stacks + Queues
 - Easy + efficient to implement with a LinkedList
Talking about recently

- Recently, talking about Maps and Sets
 - Ubiquitous ADTs
 - Implementations
 - Linked Lists
 - Arrays
 - BSTs (possibly balanced)
 - Hash tables
- Before that: Stacks + Queues
 - Easy + efficient to implement with a LinkedList
- Now, new ADT: Priority Queue
 - And how to implement it efficiently
Queue: FIFO

- Recall Queues: First in, First out
 - Enqueue: add to end of queue
 - Dequeue: take from front of queue
Queue: FIFO

- Recall Queues: First in, First out
 - void enqueue(T): add to end of queue
 - T dequeue(void): take from front of queue
 - T peek(void): look at front of queue

- Priority Queue: Best priority first
 - void enqueue(T, int): add with a given priority
 - T dequeue(void): take highest (or lowest) priority item
 - T peek(void): look at highest (or lowest) priority item
Priority Queue: Why?

• Why would we want this?
 • Job schedulers
 • Dijkstra’s shortest path algorithm (after the break)
 • Huffman compression algorithm (today)
 • ...and many more...
Naïve implementation

- Naïve implementation:
 - Sorted Linked List
 - Enqueue = Sorted Insert: O(N)
 - Dequeue = Remove from Front: O(1)
 - Peek = Get Front: O(1)
 - Unsorted Linked List
 - Enqueue = Add to Front: O(1)
 - Dequeue = Remove Max [or Min]: O(N)
 - Peek = Find Max [or Min]: O(N)

- Better implementation:
 - Balanced BST
 - Enqueue = BST Add: O(lg N)
 - Dequeue = BST Remove: O(lg N)
 - Peek = Find Max [or Min]: O(lg N)

Can we do better?
Heaps

- Heaps provide exactly what we want for Priority Queues
 - Many flavors, we will start with Binary Heaps
 - Tree-like structure, different rules than BST
 - Complete tree:
 - All levels (except maybe last) completely full
 - Last level has all nodes at left side
 - Each node is greater than its two children for a Max-Heap
 - Or less than for a Min-Heap
Heaps

- Adding to a heap:
 - Place item in next open spot
 - Leftmost un-taken spot on unfilled row
 - Bubble up until heap ordering is restored
 - Swap with parent if greater

- Example: Add 88
• **Add 88**
 • Place in first available spot
 • Violates ordering with respect to parent $88 > 13$
• Add 88
 • Place in first available spot
 • Violates ordering with respect to parent $88 > 13$
 • Swap 13 with 88
 • Now $88 < 99$, so done

• Now, you all add 75
Heaps

- Add 75
 - Place in first available spot
 - Violates ordering with respect to parent 75 > 1
Heaps

- Add 75
 - Place in first available spot
 - Violates ordering with respect to parent 75 > 1
 - Swap 1 and 75
 - 75 > 42, so still not done
Heaps

- Add 75
 - Place in first available spot
 - Violates ordering with respect to parent $75 > 1$
 - Swap 1 and 75
 - $75 > 42$, so still not done
 - Swap 75 and 42, done
Heaps

- **Delete Max**
 - Replace max item (top) with rightmost item in last level
 - Bubble down to fix heap
 - Swap with largest child when 2 children present
Heaps

- Delete Max
 - Remove 99 and replace it with 1 (removing 1 also)
• **Delete Max**
 • Remove 99 and replace it with 1 (removing 1 also)
 • Now need to swap 1 with larger of its two children (88)
• **Delete Max**
 - Remove 99 and replace it with 1 (removing 1 also)
 - Now need to swap 1 with larger of its two children (88)
 - Now swap 1 with 13
Heaps

- **Delete Max**
 - Remove 99 and replace it with 1 (removing 1 also)
 - Now need to swap 1 with larger of its two children (88)
 - Now swap 1 with 13
• Delete Max again
 • Remove 88 and replace it with 1 (removing 1 also)
Heaps

- Delete Max again
 - Remove 88 and replace it with 1 (removing 1 also)
 - Need to swap 1 with 75
Heaps

• Delete Max again
 • Remove 88 and replace it with 1 (removing 1 also)
 • Need to swap 1 with 75
 • Need to swap 1 with 42
Heaps

- Delete Max again
 - Remove 88 and replace it with 1 (removing 1 also)
 - Need to swap 1 with 75
 - Need to swap 1 with 42
Array Representation of Heaps

- Heaps: easily stored in arrays
 - No need for explicit pointers, just use math
 - Scheme 1: Root at index 0
 - Left at $2N + 1$
 - Right at $2N + 2$
 - Scheme 2: Root at index 1
 - Left at $2N$
 - Right at $2N + 1$
Array Representation of Heaps

Why would you want the root at index 1 scheme?

- Allows element 0 to be a **sentinel**
 - Bigger than all possible elements -> stops bubbling up
 - Without explicit if
 - ”Outside” the data returned by “get” operations

- Also, makes the math to find a node’s parent’s index easy
 - N/2
 - Rather than (N-1) /2
Heap enqueue

class Heap {
private:
 int * data;
 int array_size;
 int last_element;
 void bubbleUp(int index) { }
public:
 void enqueue(int prio) {
 last_element++;
 if (last_element == array_size) {
 array_size = array_size * 2;
 data = realloc(array_size * sizeof(*data);
 }
 data[last_element] = prio;
 bubbleUp(last_element);
 }
}
void bubbleUp(int index) {
 // check that we aren’t at the top already
 if (index <= 1) {
 return;
 }

 // compute parent index
 int parent = index / 2;
 if (data[parent] < data[index]) {
 // swap parent and index
 int temp = data[parent];
 data[parent] = data[index];
 data[index] = temp;
 // bubble up parent
 bubbleUp(parent);
 }
}

ECE 590.01 (Hilton): Heaps and Priority Queues
void bubbleUp(int index) {
 //Using Sentinel? Don’t need this check!
 if (index <= 1) {
 return;
 }
 //compute parent index
 int parent = index / 2;
 if (data[parent] < data[index]) {
 //swap parent and index
 int temp = data[parent];
 data[parent] = data[index];
 data[index] = temp;
 //bubble up parent
 bubbleUp(parent);
 }
}
Heap dequeue

class Heap {
 private:
 int * data;
 int array_size;
 int last_element;
 void bubbleDown(int index) { }
 public:
 int dequeue() {
 int ans = data[1];
 data[1] = data[last_element];
 last_element--;
 bubbleDown(1);
 return ans;
 }
 }
}
Heap dequeue

```c
void bubbleDown(int index) {
    //How about you all try this one?
}
```
void bubbleDown(int index) {
 int left = 2 * index;
 int right = 2 * index + 1;
 if (left > last_element) {
 return;
 }
 if (left == last_element) {
 // corner case: only have left child
 if (data[left] > data[index]) {
 swap(left,index);
 }
 }
 int maxidx = data[left] > data[right] ? left : right;
 if (data[maxidx] > data[index]) {
 swap(maxidx,index);
 bubbleDown(maxidx);
 }
}
Generality

• Can make templated PriorityQueue/Heap...

• Design choices and considerations
 • PQ of Ts: is priority part of T, or explicit/separate?
 • enqueue(T): use overloaded < on Ts to order
 • enqueue(T,int): order by ints, T does not need <
 • Priority is not an int? Using sentinel may be difficult
 • Ints are finite for computers:
 • INT_MAX = largest signed int
 • UINT_MAX = largest unsigned int
 • Strings are comparable, but not finite
 • Thing you have the largest string?
 • Add one letter to the end
 • Min heap may be easier, but requires programmer to know min value for type
Binary Heap vs Fancier Heaps

- We did “binary heap”
 - $O(1)$ find min
 - $O(\log N)$ insert
 - $O(\log N)$ remove min

- Fancier heaps exist
 - Binomial Heaps
 - Fibonacci Heaps

- We aren’t going to do them, good to know they exist
Application: Compression

- Huffman coding (compression) easily implemented with PQ

- Algorithm works with (symbol, frequency) pairs
 - Symbol = letter = char
 - Frequency = count of how many = int

- Builds binary tree of symbols from bottom up
 - Not BST, just binary tree: no ordering
 - Built from min frequency first <- use PQ for efficiency
 - Resulting tree tells encoding: path from root to symbol is its code
 - Left = 0
 - Right = 1
Huffman Motivation/Example

- Frequencies of symbols drastically different
 - a 5985
 - b 1276
 - c 4322
 - d 3046
 - e 13663
 - f 1901
 - g 1764
 - h 3631
 - i 6788
 - j 16
 - ...
 - X 76
 - Y 166
 - Z 3
 - 53168
- Use short bit sequences for common syms, long for uncommon
Huffman Example

• Initial Heap (using . for space)
• Level 0: Z
• Level 1: j J
• Level 2: M Q X B
• Level 3: F H O U Y z C D
• Level 4: k q K G v P w R x V A y n f o E
• Level 5: a p h I i r s L e u t N d S T b c g m W l.
Tree building algorithm

• Then we run this algorithm:
 • P is a priority queue which orders Nodes by frequency
 • Leaf Nodes (just a symbol): that sym’s frequency
 • Internal Nodes: sum of leafs under it

while (p->count() >= 2) {
 Node * l = p->dequeue();
 Node * r = p->dequeue();
 Node * x = new Node(l, r);
 p->enqueue(x);
}

• At the end, p->dequeue() has the root of the tree
After one step

- Level 0: (Z, J)
- Level 1: Q j
- Level 2: M U X B
- Level 3: F H O R Y z C D
- Level 4: k q K G v P w b x V A y n f o E
- Level 5: a p h I i r s L e u t N d S T . c g m W l

\[Z + J = 3 + 4 = 7 \]
\[j = 16 \]
\[Q = 91 \]
After two steps

- Level 0: ((Z, J), j)
- Level 1: Q X
- Level 2: M U z B
- Level 3: F H O R Y A C D
- Level 4: k q K G v P w b x V l y n f o E
- Level 5: a p h I i r s L e u t N d S T . c g m W

\[Z + J + j = 23 \]
\[Q = 91 \]
\[X = 76 \]
After many steps

- Level 0: g
- Level 1: (E, C) (y, (((((Z, J), j), X), M), F), k))
- Level 2: (b, S) u (w, ((((H, U), O), ((G, Y), D)))), f
- Level 3: ((((z, Q), V), q), (L, (W, B))), (P, N))
 l d h
 ((A, I), (((K, x), R), v))
 m o n
- Level 4: e a c i . s t r (T, p)
Final tree

- (Part of the) Final tree:
Reading off the encoding

- Now we build a map from symbols to bit strings
 - Read the encoding off the binary tree by traversal
Final tree

- (Part of the) Final tree:

```
  Space = 11
  (very short, very common)
```

ECE 590.01 (Hilton): Heaps and Priority Queues
Final tree

• (Part of the) Final tree:

\[\text{e=000 (very short, very common)} \]
Final tree

• (Part of the) Final tree:

c=01110
(short, fairly common)
Huffman Coding continued

- Our less common symbols get very long strings
 - \(U = 0111101001 \)
 - \(V = 1010000001 \)
 - \(W = 1010000110 \)
 - \(X = 00111110001 \)
 - \(Y = 0111101101 \)
 - \(Z = 0011111000000 \leftarrow 13 \text{ bits!} \)
 - \(J = 0011111000001 \leftarrow 13 \text{ (almost identical) bits!} \)
 - \(j = 001111100001 \leftarrow 12 \text{ bits!} \)

- For frequencies I used,
 - Average bits/symbol = 4.01446
 - Uncompressed, best we can do with \(\sim64 \) symbols is 6 bits/sym
 - Saved 33% of the space
Huffman Decompression

- Decompression relies on the fact nothing is a prefix of anything else
 - $Z = 00111110000000$
 - $J = 00111110000001$
 - $j = 001111100001$

- May share a common prefix (path through tree) with other symbols
 - But one symbol’s encoding may not be a prefix of another
 - J, j, and Z all start the same, but none is a prefix of the other
 - Easy to see this is true:
 - Symbols are at the leaves of the tree
 - Unique paths through the tree produce unique bit strings
 - Leaf nodes are not on a prefix of any other path through the tree
Heaps and Sorting

• Heaps are also good for sorting
 • Maps and Sets: most ubiquitous ADTs
 • Searching and Sorting: most ubiquitous algorithms

• Heapsort: efficient sorting algorithm, using heaps
 • Next time: all about sorting