ECE 590.01
C++ Programming, Data structures, and Algorithms
Balanced Trees

Admin
• Reading
 • Chapter 4 + 12.2
 • Starting Chapter 5 for next time is a good idea
• Midterm soon
 • March 1st in recitation
 • Page of notes
 • Be prepared: know how to code
 • Fair game:
 • Anything through lecture on 2/18 (before now)
 • Anything from Ch 1.1 to 4.3 in your book.
 • Coding question: may be something you haven’t seen before
 • Goal is to be able to come up with it, not regurgitate it

What have we been talking about?
• What did we talk about last time?

What have we been talking about?
• What did we talk about last time?
 • Binary Search Trees
 • ...and more binary search trees
 • Idea: O(lg N) access
 • “We hope”

A bad BST
• Can end up with degenerate BSTs
 • O(N) access time
 • What’s the point?
 • Example: add 1, 2, 3, 4, 5.
 • How likely are bad cases to come up? It depends...

So what do we do about it?
• Two approaches (know both)
 • AVL (Adelson-Velskii and Landis) trees
 • Book: 4.4
 • Red-black trees
 • Book: 12.2

• Will not guarantee “perfect tree” (very hard)
 • But will guarantee O (lg N)
 • Generally ~2^* lg N maximum height
AVL trees

- AVL trees work on principle of balance
 - Height of two sub-trees cannot differ by more than 1

 \[
 \text{height}(\text{node}) = \begin{cases}
 0 & \text{if node is NULL} \\
 1 + \max(\text{height}(\text{node}\rightarrow\text{left}), \text{height}(\text{node}\rightarrow\text{right})) & \text{otherwise}
 \end{cases}
 \]

- Insert (or delete) would violate this principle?

- Rotate tree to fix

- Add 1 to empty tree
 - Heights are shown next to nodes
 - Green = OK
 - Red = violating AVL rule
 - All good so far

- Add 2 to tree
 - Everything is still fine
 - Children of 1 have heights 1 and 0, differ by 1

- Fix with single right rotation
 - \(v = \) violated node
 - \(r = v\rightarrow\text{right} \)

- Add 3 to tree
 - Now we have a problem at 1
 - Right child: height = 2
 - Left child: height = 0
 - Difference: 2

- Fix with single rotation: violated node = \(v \)
 - \(v\rightarrow\text{right} = r\rightarrow\text{left} \)

- How do we know this respects the BST rules?
AVL trees

- Fix with single rotation: violated node = v
 \n v->right = r
 r->left = v;

 How do we know this respects the BST rules?

ECE 590.01 (Hilton): Balanced Trees

Resulting tree respects AVL rules
 - Now let's add 4 and see what happens

ECE 590.01 (Hilton): Balanced Trees

- Adding 4 works fine: no re-balance needed
 - Height differences at most 1 everywhere
 - Add 5?

ECE 590.01 (Hilton): Balanced Trees

- Adding 5 looks like two violations of rules
 - First one (coming up): at 3 (2 vs 0)
 - Second one at 4 (3 vs 1)
 - Reality: one violation (at 3)
 - Fix it, and everything is fine

ECE 590.01 (Hilton): Balanced Trees
AVL trees

- Single rotate at 3
 - 4 is the new root of that subtree
 - Which means new right child of 2
 - Now 2's children are balanced: 2 vs 1

More generally
- Start with something like this
 - Adding to the right side of r and increasing its height

This causes the violation
- Rotating fixes the violation
 - And reduces the height of the sub-tree back to N+2
 - Its original height, so no further violations

But what if we add to the right-side of the left
 - (or the left side of the right)
 - Now doing a single rotation doesn’t fix it
 - Just puts the problem on the other side!
AVL trees

- For these cases need double rotation
 - First, "zoom in" on l's right sub-tree
 - Note that $l < r < v$

ECE 590.01 (Hilton): Balanced Trees

25

AVL trees

- For these cases need double rotation
 - $l->right = r$;
 - $v->left = r->right$;
- L and v both have height $N+1$ now and respect the AVL balance
 - What do we do with r?

ECE 590.01 (Hilton): Balanced Trees

26

AVL trees

- For these cases need double rotation
 - $r->left = 1$;
 - $r->right = v$;
- R becomes the new root of this sub-tree
 - And is now only height $N+2$ (original height of sub tree)

ECE 590.01 (Hilton): Balanced Trees

27

AVL double rotate

- Concrete example: add 3, 1, 2

ECE 590.01 (Hilton): Balanced Trees

28

AVL tree implementation

- Implementation
 - Add field to nodes for "height"
 - Write a recursive add
 - On the "way back out" (as recursions return)
 - Check balance
 - Rotate as needed
 - Update height
 - Return correct subtree up recursion
 - Code: in your book

ECE 590.01 (Hilton): Balanced Trees

29

AVL deletion

- Deletion from AVL tree
 - Start with basic BST delete algorithm (recursive)
 - On the way back up
 - Calculate balance
 - Rotate as needed
 - Same rotations
 - Update heights
 - Unlike add, multiple rotations may be required

ECE 590.01 (Hilton): Balanced Trees

30
Suppose we start with this AVL tree

Convince yourself it's a valid AVL tree before we proceed.

Now delete 35
We would recurse down to find 35 as usual
Then delete it
Then re-balance on the way back up.

Now delete 35
We would recurse down to find 35 as usual
Then delete it
Then re-balance on the way back up

Single rotation fixes the problem with 10-20-30
It's the same problem as if we had just added 10...
But since we are removing (and the tree is getting shorter) we can create a problem at the next level.

Rotate at 40 to fix this
Similar to if we added 100.

By the time we reach the root, everything is fixed
Note: may need double rotates too (imagine if left sub-tree of 60 were bigger than right sub-tree of 60).
Another approach: red-black trees

- Can also balance with red-black trees
 - Used in Linux Kernel

- Four rules
 1. Every node is either red or black
 2. The root is black
 3. If a node is red, its children must be black
 4. Every path from root->NULL must have the same number of black nodes.

1. Why do these rules work?

- Height down one path at most 2x height down another path
- All black path: N nodes
- Alternate red/black path: 2N nodes
 - 2N+1 nodes on longer path? +1 is…
 - Red? 2 red nodes in a row
 - Black? N+1 black nodes on this path
Red-black tree

• A red-black tree
 • Figure 12.9 in your book
 • Note: not a valid AVL tree

Convince ourselves that it meets all the rules

0. It follows the rules of a BST

1. Every node is either red or black

2. The root is black

3. If a node is red, its children must be black

4. Every path from any given node to NULL has the same number of black nodes
Red-black tree

- Adding:
 - On the way down, black node with 2 red children?
 - Flip black -> red, red children to black

Example:
- Add 86

Current node is black, both children are red
- Re-color them

Example:
- Add 87

Current node is black, both children are red
- Re-color them
- Then keep going
Red-black tree

- Keep going
 - Found place to add (left of 90 is NULL)

Add 87 on left of 90
 - Color it red
 - Why?

Adding a red node doesn’t change the black node count on a path

Ok, sounds great, but...
 - Don’t we have to rotate things sometimes?
 - Sure, now add 88

Re-color here
Red-black tree

• Re-color here

ECE 590.01 (Hilton): Balanced Trees

Red-black tree

• Re-color here

ECE 590.01 (Hilton): Balanced Trees

Red-black tree

• Found place to add
 • Want to add 88 as red child of 87
 • This violates rule 3
 • Red nodes must have black children

ECE 590.01 (Hilton): Balanced Trees

Red-black rotations

• Problem: B has red child C (just added C)
 • Triangles indicate arbitrary sub trees again

ECE 590.01 (Hilton): Balanced Trees

Red-black rotations

• Problem: B has red child C (just added C)
 • Triangles indicate arbitrary sub trees again
 • Rotation very similar to AVL
 • But requires re-coloring nodes

ECE 590.01 (Hilton): Balanced Trees
Red-black rotations

- New difficulty?
 - What if A's right sub-tree starts with a red node?
 - Now A is red... and has a red child
- \(\circ \)

- Fortunately for us, we made this impossible
 - Remember the re-coloring?
 - A is a black node with 2 red children...
 - So we color flip before proceeding

Red-black tree

- Back to our example
 - This is where we added 88
 - Rotation case
Red-black tree

- May need to rotate on the way down as we re-color too
 - At a black node with 2 red children: rules say re-color

ECE 590.01 (Hilton): Balanced Trees 73

Red-black tree

- May need to rotate on the way down as we re-color too
 - At a black node with 2 red children: rules say re-color
 - Now have a violation of red child rule

ECE 590.01 (Hilton): Balanced Trees 74

Red-black tree

- How do we know we aren't breaking any rules now?

ECE 590.01 (Hilton): Balanced Trees 75

Red-black tree

- Can't have a red node at the top of the blue triangle:
 - Would have red node with red child

ECE 590.01 (Hilton): Balanced Trees 76

Red-black tree

- Even though a red node at the top of grey was possible
 - We made it impossible during our traversal
 - Would have flipped 15 -> red, and 30 & X -> black

ECE 590.01 (Hilton): Balanced Trees 77
Red-black tree

- Note: I drew the heights this way somewhat on purpose
 - Idea of red-black: balance on the way down
 - Going to add to right? Want it to be shorter than left when we get there!

Why red-black?

- Advantage of red-black (vs AVL)
 - Can do all balancing on the way down for insert
 - Makes iterative algorithm easier (for people scared of recursion)

- Disadvantage of red-black (vs AVL)
 - Slightly worse guarantee on height

Red-black delete

- Red-black deletion:
 - Remove red node? Easy
 - Remove black node? Now 1 short…

- Amazing insight by Dr. Matt Might (Prof at U. of Utah)
 - Add temporary colors
 - Double black
 - Negative black
 - Allows you to keep invariants the whole time
 - Just have to “fix” colors you aren’t allowed to have

- Side note: Matt’s blog is highly recommended reading
 - Programming, grad school, HOWTOs, Productivity…
 - Interest in PhD program? Highly suggest his articles on it

Wrap-up

- That concludes trees
 - Covered a lot here
 - Make sure you absorb it all

- Monday: start hash tables
 - Reading: Chapter 5