Last Time in ECE 550....

- Who can remind us what we talked about last time?

Numbers
- One hot
- Binary
- Hex
- Digital Logic
 - Sum of products
 - Encoders
 - Decoders

Implementing Addition

- First, one bit addition.
 - Three inputs: Carry In (CI), A, B
 - Two outputs Carry Out (CO), Sum (S)
- Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Half Adder

- Ignore CI for a second (assume is 0)
 - Can simplify a lot and build "half adder"
 - Formula for S?
 - Formula for CO?

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Half Adder

- Half adder:
 - 1 XOR and 1 AND
 - Can anyone guess why its called a half adder?

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>Sum</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Implementing Addition

- Re-visit Truth table, but..
 - Use Half-Sum and Half-CO (results of Half-Adder)
 - Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementing Addition

- Formulas:
 - Sum? \(\text{CI xor Half-Sum} \)
 - CO? \((\text{CI and Half-Sum}) \text{ OR Half-CO} \)

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Full Adder

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside?

Ripple Carry

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside? Slow
 - Let's see why
Full Adder

- Cout depends on Cin
 - 2 “gate delays” through full adder for carry

![Full Adder Diagram](image)

Ripple Carry

- Carries form a chain
 - Need CO of bit N is CI of bit N+1
 - For few bits (e.g., 4) no big deal
 - For realistic numbers of bits (e.g., 32, 64), slow

![Ripple Carry Diagram](image)

Adding

- Adding is important
 - Want to fit add in single clock cycle
 - (More on clocking soon)
 - Why? Add is ubiquitous
 - Ripple Carry is slow
 - Maybe can do better?
 - But seems like Cin always depends on prev Cout
 - ...and Cout always depends on Cin...

Hardware != Software

- If this were software, we’d be out of luck
 - But hardware is different
 - Parallelism: can do many things at once
 - Speculation: can guess

Carry Select

- Do three things at once (32 gates)
 - Add low 16 bits
 - Add high 16 bits assuming CI = 0
 - Add high 16 bits assuming CI = 1
- Then pick correct assumption for high bits (2—3 gates)

![Carry Select Diagram](image)

- Could apply same idea again
 - Replace 16-bit RC adders with 16-bit CS adders
 - Reduce delay for 16 bit add from 32 to 18
 - Total 32 bit adder delay = 20
 - So... just go nuts with this right?
Tradeoffs

- Tradeoffs in doing this
 - Power and Area (\(\approx\) number of gates)
 - Roughly double every "level" of carry select we use
 - Less return on increase each time
 - Adding more mux delays
 - Wire delays increase with area
 - Not easy to count in slides
 - But will eat into real performance

- Fancier adders: recitation
 - Can do even better

Recall: Subtraction

- 2's complement makes subtraction easy:
 - Remember: \(A - B = A + (-B)\)
 - And: \(-B = \sim B + 1\)
 - That means flip bits ("not")
 - So we just flip the bits and start with CI = 1
 - Fortunate for us: makes circuits easy
 - \(\begin{array}{c}
 1 \\
 0110101 \\
 \sim \\
 0101101
 \end{array}\)

32-bit Adder/subtractor

- Inputs: A, B, Add/Sub (0=Add, 1 = Sub)
- Outputs: Sum, Cout, Ovf (Overflow)

Arithmetic Logic Unit (ALU)

- ALUs do a variety of math/logic
 - Add
 - Subtract
 - Bit-wise operations: And, Or, Xor, Not
 - Shift (left or right)

- Take two inputs (A,B) + operation (add,shift..)
 - Do a variety in parallel, then mux based on op

Bit-wise operations: SHIFT

- Left shift (\(<<\))
 - Moves left, bringing in 0s at right, excess bits "fall off"
 - \(10010001 << 2 = 01000100\)
 - \(x << k\) corresponds to \(x \times 2^k\)

- Logical (or unsigned) right shift (\(>>\))
 - Moves bits right, bringing in 0s at left, excess bits "fall off"
 - \(10010001 >> 3 = 0001010\)
 - \(x >> k\) corresponds to \(x / 2^k\) for unsigned x

- Arithmetic (or signed) right shift (\(>>\))
 - Moves bits right, bringing in (sign bit) at left
 - \(10010001 >> 3= 1110010\)
 - \(x >> k\) corresponds to \(x / 2^k\) for signed x
Shift: Implementation...?

- Suppose an 8-bit number
 \(b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \)
- Shifted left by a 3 bit number
 \(s_2 s_1 s_0 \)
- Option 1: Truth Table?
 - 2048 rows? Not appealing

Lets simplify

- Simpler problem: 8-bit number shifted by 1 bit number
 (shift amount selects each mux)

Now shifted by 3-bit number

- Shifter in action: shift by 000

Now shifted by 3-bit number

- Shifter in action: shift by 010
Now shifted by 3-bit number

- Shifter in action: shift by 011

What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - $\pi \approx 3.14159$
 - $\frac{1}{2} = 0.5$
- How could we represent these sorts of numbers?
 - Fixed Point
 - Rational
 - Floating Point (IEEE Single Precision)

Floating Point

- Think about scientific notation for a second:
- For example:
 6.02×10^{23}
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 2 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?

IEEE single precision floating point

- Specific format called IEEE single precision:
 - +/- 1.YYYYY * 2^{(N-127)}
 - “float” in Java, C, C++, ...
- Assume X is always 1 (save a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)

Binary fractions

- 1.YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - Thousandths
 -
 - So after a binary point you have...
Binary fractions

• 1.YYYY has a binary point
 • Like a decimal point but in binary
 • After a decimal point, you have
 • Tenths
 • Hundredths
 • Thousandths
 •
 • So after a binary point you have...
 • Halves
 • Quarters
 • Eights
 •

Floating point example

• Binary fraction example:
 • 101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625
 • For floating point, needs normalization:
 • 1.01101 * 2^2
 • Sign is +, which = 0
 • Exponent = 127 + 2 = 129 = 1000 0001
 • Mantissa = 1.011 0100 0000 0000 0000 0000

Floating Point Representation

Example:
What floating-point number is:
0xC1580000?

Answer

What floating-point number is
0xC1580000?

• Sign = 1 which is negative
• Exponent = (128+2)-127 = 3
• Mantissa = 1.1011
• -1.1011 \times 2^3 = -1101.1 = -13.5

Trick question

• How do you represent 0.0?
 • Why is this a trick question?

Trick question

• How do you represent 0.0?
 • Why is this a trick question?
 • 0.0 = 00000000
 • But need 1.XXXX representation?
Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - 0.0 = 00000000
 - But need 1.XXXXX representation?
- Exponent of 0 is denormalized
 - Implicit 0, instead of 1, in mantissa
 - Allows 0000....0000 to be 0
 - Helps with very small numbers near 0
- Results in +/- 0 in FP (but they are "equal")

Other weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- \infty
 - 1/0 = +\infty
 - -1/0 = -\infty
 - Non-zero mantissa: Not a Number (NaN)
 - \sqrt{-42} = NaN

Floating Point Representation

- Double Precision Floating point:
 64-bit representation:
 - 1-bit sign
 - 11-bit (biased) exponent
 - 52-bit fraction (with implicit 1).
 - “double” in Java, C, C++, ...

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52-bit</td>
</tr>
</tbody>
</table>

Danger: floats cannot hold all ints!

- Many programmers think:
 - Floats can represent all ints
 - NOT true
 - First summer internship I had:
 - Need some floats and some ints: just use floats!
 - Bug in their code!
 - Other developers shocked as I demonstrated problem...
- Doubles can represent all 32-bit ints
 - (but not all 64-bit ints)

Wrap Up

- Implementation of Math
 - Addition/Subtraction
 - Shifting
- Floating Point Numbers
 - IEEE representation
 - Denormalized Numbers
- Next Time:
 - Storage
 - Clocking