ECE 550: Fundamentals of Computer Systems and Engineering

Digital Arithmetic
Admin

• Homework
 • Homework 1

• Reading:
 • Chapter 3
Last Time in ECE 550….

- Who can remind us what we talked about last time?
Last Time in ECE 550....

- Who can remind us what we talked about last time?
 - Numbers
 - One hot
 - Binary
 - Hex
 - Digital Logic
 - Sum of products
 - Encoders
 - Decoders
Implementing Addition

- First, one bit addition.
 - Three inputs: Carry In (CI), A, B
 - Two outputs Carry Out (CO), Sum (S)

- Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Implementing Addition

- First, one bit addition.
 - Three inputs: Carry In (CI), A, B
 - Two outputs Carry Out (CO), Sum (S)
- Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Half Adder

- Ignore CI for a second (assume is 0)
 - Can simplify a lot and build “half adder”
 - Formula for S?
 - Formula for CO?

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Half Adder

- Ignore CI for a second (assume is 0)
 - Can simplify a lot and build “half adder”
 - Formula for S? \(A \ XOR \ B \)
 - Formula for CO? \(A \ AND \ B \)

<table>
<thead>
<tr>
<th>CI</th>
<th>A</th>
<th>B</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Half Adder

- Half adder:
 - 1 XOR and 1 AND
 - Can anyone guess why its called a **half** adder?
Implementing Addition

- Re-visit Truth table, but..
 - Use Half-Sum and Half-CO (results of Half-Adder)
- Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementing Addition

- Re-visit Truth table, but..
 - Use Half-Sum and Half-CO (results of Half-Adder)
- Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

ECE 550 (Hilton): Digital Arithmetic
Implementing Addition

- Re-visit Truth table, but..
 - Use Half-Sum and Half-CO (results of Half-Adder)
- Go around room for truth table:

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementing Addition

- Formulas:
 - Sum?
 - CO?

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementing Addition

- Formulas:
 - Sum? \(\text{CI xor Half-Sum} \)
 - CO? \((\text{CI and Half-Sum}) \text{ OR Half-CO} \)

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementing Addition

- **Formulas:**
 - **Sum?** [CI xor Half-Sum]
 - **CO?** (CI and Half-Sum) OR Half-CO

<table>
<thead>
<tr>
<th>CI</th>
<th>Half-Sum</th>
<th>Half-CO</th>
<th>S</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Full Adder

- Full Adder
- 2 Half Adders + an OR Gate
Ripple Carry

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside?
Ripple Carry

- Full Adder = Add 1 Bit
 - Can chain together to add many bits
 - Upside: Simple
 - Downside? Slow
 - Let’s see why
Full Adder

- Cout depends on Cin
 - 2 “gate delays” through full adder for carry
Ripple Carry

- Carries form a chain
 - Need CO of bit N is CI of bit N+1
- For few bits (e.g., 4) no big deal
 - For realistic numbers of bits (e.g., 32, 64), slow
Adding

- Adding is important
 - Want to fit add in single clock cycle
 - (More on clocking soon)
 - Why? Add is ubiquitous

- Ripple Carry is slow
 - Maybe can do better?
 - But seems like Cin always depends on prev Cout
 - ...and Cout always depends on Cin...
Hardware != Software

• If this were software, we’d be out of luck
 • But hardware is different
 • Parallelism: can do many things at once
 • Speculation: can guess
Do three things at once (32 gates)

- Add low 16 bits
- Add high 16 bits assuming CI = 0
- Add high 16 bits assuming CI = 1

Then pick correct assumption for high bits (2–3 gates)
Could apply same idea again
- Replace 16-bit RC adders with 16-bit CS adders
 - Reduce delay for 16 bit add from 32 to 18
 - Total 32 bit adder delay = 20
- So... just go nuts with this right?
Tradeoffs

- Tradeoffs in doing this
 - Power and Area (~= number of gates)
 - Roughly double every “level” of carry select we use
 - Less return on increase each time
 - Adding more mux delays
 - Wire delays increase with area
 - Not easy to count in slides
 - But will eat into real performance

- Fancier adders: recitation
 - Can do even better
Recall: Subtraction

- 2’s complement makes subtraction easy:
 - Remember: \(A - B = A + (-B) \)
 - And: \(-B = \sim B + 1 \)
 - \(\uparrow \) that means flip bits ("not")
 - So we just flip the bits and start with \(CI = 1 \)
 - Fortunate for us: makes circuits easy

\[
\begin{array}{c}
1 \\
0110101 \quad \rightarrow \quad 0110101 \\
- 1010010 \quad + \quad 0101101
\end{array}
\]
32-bit Adder/subtractor

- Inputs: A, B, Add/Sub (0=Add, 1 = Sub)
- Outputs: Sum, Cout, Ovf (Overflow)
32-bit Adder/subtractor

- By the way:
 - That thing has about 3,000 transistors
 - Aren’t you glad we have abstraction?
Arithmetic Logic Unit (ALU)

- ALUs do a variety of math/logic
 - Add
 - Subtract
 - Bit-wise operations: And, Or, Xor, Not
 - Shift (left or right)

- Take two inputs (A,B) + operation (add, shift..)
 - Do a variety in parallel, then mux based on op
Bit-wise operations: SHIFT

- **Left shift (<<)**
 - Moves left, bringing in 0s at right, excess bits “fall off”
 - $10010001 << 2 = 01000100$
 - $x << k$ corresponds to $x \times 2^k$

- **Logical (or unsigned) right shift (>>)**
 - Moves bits right, bringing in 0s at left, excess bits “fall off”
 - $10010001 >> 3 = 00010010$
 - $x >> k$ corresponds to $x / 2^k$ for unsigned x

- **Arithmetic (or signed) right shift (>>>)**
 - Moves bits right, bringing in (sign bit) at left
 - $10010001 >> 3 = 11110010$
 - $x >>> k$ corresponds to $x / 2^k$ for signed x
Shift: Implementation...?

• Suppose an 8-bit number
 \[b_7b_6b_5b_4b_3b_2b_1b_0 \]

Shifted left by a 3 bit number
 \[s_2s_1s_0 \]

• Option 1: Truth Table?
 • 2048 rows? Not appealing
Let's simplify

- Simpler problem: 8-bit number shifted by 1 bit number (shift amount selects each mux)
Let's simplify

- Simpler problem: 8-bit number shifted by 2 bit number (new muxes selected by 2\text{nd} bit)
Now shifted by 3-bit number

- Full problem: 8-bit number shifted by 3 bit number (new muxes selected by 3rd bit)
Now shifted by 3-bit number

- Shifter in action: shift by 000
Now shifted by 3-bit number

- Shifter in action: shift by 010
Now shifted by 3-bit number

- Shifter in action: shift by 011
What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - $\pi = 3.145...$
 - $\frac{1}{2} = 0.5$
- How could we represent these sorts of numbers?
 - Fixed Point
 - Rational
 - Floating Point (IEEE Single Precision)
Floating Point

- Think about scientific notation for a second:
- For example:
 \[6.02 \times 10^{23} \]
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 2 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?
Floating Point

• How about:
• \[+/- \ X.YYYYYY \times 2^{+/-N} \]

• Big numbers: large positive N
• Small numbers (<1): negative N
• Numbers near 0: small N

• This is "floating point" : most common way
IEEE single precision floating point

- Specific format called IEEE single precision:
 - +/- 1.YYYYY * 2^{N-127}
 - “float” in Java, C, C++,...

- Assume X is always 1 (save a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)
Binary fractions

• 1.YYYY has a binary point
 • Like a decimal point but in binary
 • After a decimal point, you have
 • tenths
 • hundredths
 • Thousandths
 •

• So after a binary point you have...
Binary fractions

- 1.YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - Tenths
 - Hundredths
 - Thousandths
 -

- So after a binary point you have...
 - Halves
 - Quarters
 - Eights
 -
Floating point example

- Binary fraction example:
 - \(101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625 \)

- For floating point, needs normalization:
 - \(1.01101 \times 2^2 \)
 - Sign is +, which = 0
 - Exponent = 127 + 2 = 129 = 1000 0001
 - Mantissa = 1.011 0100 0000 0000 0000 0000

\[
\begin{array}{cccccccccccccccc}
31 & 30 & 23 & 22 & & & & & & & & & & & & 0 \\
0 & 1000 & 0001 & 011 & 0100 & 0000 & 0000 & 0000 & 0000
\end{array}
\]
Floating Point Representation

Example:
What floating-point number is:
0xC1580000?
Answer

What floating-point number is 0xC1580000?

1100 0001 0101 1000 0000 0000 0000 0000

Sign = 1 which is negative
Exponent = (128+2)-127 = 3
Mantissa = 1.1011
-1.1011x2^3 = -1101.1 = -13.5
Trick question

- How do you represent 0.0?
 - Why is this a trick question?
Trick question

• How do you represent 0.0?
 • Why is this a trick question?
 • 0.0 = 000000000
 • But need 1.XXXX representation?
Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - 0.0 = 000000000
 - But need 1.XXXXX representation?
- Exponent of 0 is denormalized
 - Implicit 0. instead of 1. in mantissa
 - Allows 0000....0000 to be 0
 - Helps with very small numbers near 0
- Results in +/- 0 in FP (but they are “equal”)
Other weird FP numbers

• Exponent = 1111 1111 also not standard
 • All 0 mantissa: +/- ∞
 1/0 = +∞
 -1/0 = -∞
 • Non zero mantissa: Not a Number (NaN)
 \(\sqrt{-42} = \text{NaN} \)
Floating Point Representation

- Double Precision Floating point:

 64-bit representation:
 - 1-bit sign
 - 11-bit (biased) exponent
 - 52-bit fraction (with implicit 1).

- “double” in Java, C, C++, ...

\[
\begin{array}{ccc}
S & \text{Exp} & \text{Mantissa} \\
1 & 11\text{-bit} & 52 - \text{bit}
\end{array}
\]
Danger: floats cannot hold all ints!

- Many programmers think:
 - Floats can represent all ints
 - NOT true

- First summer internship I had:
 - Need some floats and some ints: just use floats!
 - Bug in their code!
 - Other developers shocked as I demonstrated problem...

- Doubles can represent all 32-bit ints
- (but not all 64-bit ints)

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52 - bit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8-bit</td>
<td>23-bit</td>
</tr>
</tbody>
</table>

ECE 550 (Hilton): Digital Arithmetic
Wrap Up

- Implementation of Math
 - Addition/Subtraction
 - Shifting
- Floating Point Numbers
 - IEEE representation
 - Denormalized Numbers
- Next Time:
 - Storage
 - Clocking