ECE 550
Fundamentals of Computer Systems and Engineering

Introduction

Admin
- Professor: Andrew ("Drew") Hilton
 - E-mail: adhilton@ee.duke.edu
 - Office: Hudson 211
 - Office Hours: TBA
 - Or by appointment (e-mail me, we'll setup a time)
- TAs:
 - John O'Hollaren (Recitation)
 - Ziqiang (Patrick) Huang
 - Pat Pensabene

A bit about me
- Teaching is my primary job
- Don't be afraid to come to my office hours!
- Don't be afraid to ask me to setup some other office hours time!
- Please, feel free to call me "Drew"
 - Actually, I strongly prefer that to "Professor Hilton"
 - Why?
 - Formalism creates distance
 - Familiarity creates comfort
 - Typically makes me more accessible
 - Students who call me "Drew" often more willing to approach me for help

A bit about you
- Before we get too much further, I'd like you all to introduce yourselves:
 - Will try to learn your names quickly

Overview
- For: MS/MEng students who want Comp Eng focus..
 - ...but don't have Comp Eng undergrad
- Background for
 - ECE 522: Advanced Computer Architecture
 - ECE 554: Fault-Tolerant and Testable Computer Systems
 - ECE 556: Wireless Networking and Mobile Computing
 - ECE 559: Advanced Digital System Design
 - CS 510: Operating Systems
 - CS 512: Computer Networks/Distributed Systems

What we will learn: 10K feet
- Transistors -> Processor
 - Logic gates, combinational logic, sequential logic, FSMs
 - Adders, multipliers, shifters
 - Latches, Flip-flops, SRAMs, DRAMs, CAMs
 - Single-cycle datapaths, pipelining
 - Caches, memory hierarchy, virtual memory
 - Interrupts, exceptions, IO
- Hardware/software interface (ISA)
 - MIPS assembly
- Operating System basics
 - System calls, protection, multi-tasking, ...
- Networking basics
 - 7 layer OSI model, TCP/IP, routing,...
How We Will Learn It

- Must "learn by doing":
 - 4/5 homeworks: Implement something VHDL
- Write VHDL, synthesize it
 - Load it on Altera DE2 board
 - Run it, demo it to TAs
- 1/5 homework: Write MIPS assembly
 - Run it in SPIM

A Word About Varying Backgrounds

- I expect wide variations in backgrounds for this class
 - E.g., some know VHDL, some have never seen it
- Even if you are familiar with a topic we are covering...
 - You may learn something new
 - You may refresh rusty memory
 - I may present it slightly differently than you are used to
 - You may be able to help other students learn it
- If you missing some background (feeling lost)
 - Please come talk to me or a TA sooner rather than later!

A Few Notes on Grades

- I would love for everyone to earn an A (or even A+)
 - You have to earn it though: I don't give it away
- Last time: 96% As and Bs (53% As / 43% Bs)
 - Tests are "imminently reasonable" (quote a former student)
 - Show me you know the stuff I taught you, you will do well
- If you earn an F, you will get an F
 - Has happened in the past
 - Dire consequences for graduate students!

Grading Scale

- Grading: 10 points per letter
 - Top 3 points: +
 - Middle 6 points: no modifier
 - Bottom point: -
- This scale: minimum guaranteed letter
 - Get an 87?: Guaranteed at least B+

- I may adjust the thresholds slightly
 - Completely at my discretion

- Two reasons I typically might do this
 - Clustering of grades shows different break points
 - 90.2, 90.15, 90.1, 90.06, 90.01, 89.9, 89
Grading Scale

- Grading: 10 points per letter
 - Top 3 points: +
 - Middle 6 points: no modifier
 - Bottom point: -
- This scale: minimum guaranteed letter
 - Get an 87? Guaranteed at least B+
- I may adjust the thresholds slightly
 - Completely at my discretion
- Two reasons I typically might do this
 - Clustering of grades shows different break
 - 90.2, 90.15, 90.1, 90.06, 90.01, 89.9, 88
 - More accurate reflection of effort/knowledge
 - Hard work, class attendance...

Assignments

- Homework [30%]
- Class Attendance/Quizzes [10%]
 - 50% being present in class
 - 50% checkup questions
- Midterm Exam [25%]
 - Nov 1, in recitation time
- Final Exam [35%]
 - According to registrar’s final exam schedule

Reading

- Text:
 - Computer Organization & Design (Patterson & Hennessy)
 - You are expected to complete the assigned readings
 - Some material on the CD (e.g., Appendix)
 - Note: get revised 4th edition, but not any of the unusual variants (e.g., ARM version)
- We are going to skip around a bit relative to the book
 - Digital logic earlier/more focus on it
 - Pipelining later, less focus
- Read
 - Start reading Chapter 1 and Appendix C now

Late Policy

- Late Policy
 - 5 days per group total for the semester
 - Does not change demo deadline, only submission deadline
 - Days, not classes
 - Used in entire days: 10 min late = on next day
 - After used up: must turn in on time
 - No credit for late work after this
 - Extenuating circumstances: talk to me
 - E.g., serious injury/illness, family emergency...
 - This course takes time: start early!
 - Debugging VHDL can take a while

Lecture

- You all will get more out of this if you participate than if I just talk for 75 minutes
 - Please ask questions, discuss things you are unclear on, etc..
 - I will ask you all to answer questions
 - Don’t be afraid of this, I’ll ask everyone
 - If you are wrong, its not the end of the world, we’ll stop and make sure you get it
 - Typically, I’ll work my way around the room, so nobody will be surprised that they are next to be called on

Class Attendance/Quizzes

- I expect you to attend class...
 - But understand that sometimes things come up and you need to miss
- We will have 8 “quizzes” throughout the semester in lecture
 - You get 50% for being there, 50% for correct answers
 - Drop 2 lowest quiz grades (count 6 out of 8)
 - Questions mostly check if paying attention/understanding discussion
 - Recommend asking questions if you are unclear on things
 - Reading in advance of lecture
 - May try out a few different quiz formats
 - Drop quizzes: account for needing to miss lecture
 - Long term circumstances, please talk to me
Homeworks

- Homeworks: 5 of them in the semester
 - Work in groups of 2 or 3
 - Fixed for semester once formed
 - Exceptional circumstances/dysfunctional group: talk to me
 - Do not work alone:
 - First assignment may be easy... but will want a group later
 - End of recitation this week: a few minutes to form groups
- "Demo" portion of homework
 - "Question and Answer" may be better term
 - TAs will ask each person questions about project: accountability
 - ALL group members MUST know how it all works
 - TAs will ask a particular group member a question
 - "I don't know, John did that part" will lose points

Academic Integrity

- Academic Integrity Expectations
 - I take academic integrity VERY seriously, and you should too
 - Basic principles for Duke in general:
 - I will not lie, cheat, or steal in my academic endeavors, nor will I accept the actions of those who do.
 - I will conduct myself responsibly and honorably in all my activities as a Duke student.
 - If I suspect academic misconduct in my class...
 - Reported to the appropriate Associate Dean
 - Due process to determine if you did commit academic misconduct
 - If found responsible,
 - I will give you a 0 on the assignment
 - Appropriate Associate Dean may apply additional penalties

Academic Integrity: Class work

- Classwork exercises: practice and learn
 - Do your work... but feel free to get help
 - I expect you to be the one typing your answer
 - Not copied/downloaded
 - I expect you to understand your submission
 - Should be able to explain how it works
 - Be able to do it, or similar problems

Academic Integrity: Homework

- Project: You + your group
 - Should not be getting help from other groups, students
 - Can ask TAs + me for help
 - Not many external resources you should be using

Academic Integrity: Mini-Quizzes

- Mini-Quizzes: Individual Effort
 - Open Notes
 - Can use paper resources
 - Will allow electronic reading of course lecture slides
 - But may not use laptop/tablet for anything else
 - If you use an electronic device during the quiz, I'd better see the course lecture slides on it
 - May not discuss with classmates
 - Closed Book

Academic Integrity: Exams

- Exams in this class are individual effort
 - Allowed 1 page of notes
 - Closed book
 - No electronic/interactive/human resources
 - Before I return your exams, I will photocopy and keep a random subset
 - If you request a re-grade, I will compare your solutions to my photocopy. If they have been changed, I will report the incident directly.

- Related exam policies:
 - Questions? Raise hand, TA or I will come to you (don't get up)
 - Need restroom? Raise hand, we will let you go one at a time
 - No calculators/smart phones: too easy to use to chat
Academic Integrity: General

- Some general guidelines
 - If you don’t know if something is OK, please ask me.
 - If you think “I don’t want to ask, you will probably say no” that is a good sign its NOT acceptable.
 - If you do something wrong, and regret it, please come forward—I recognize the value and learning benefit of admitting your mistakes. (Note: this does NOT mean there will be no consequences if you come forward).
 - If you are aware of someone else’s misconduct, you should report it to me or another appropriate authority.
- Within your homework group, this becomes even stronger: if you are aware that one of your group members has committed misconduct on a homework submission for your group, you are complicit in it if you do not report it.

Course Problems

- Can’t make midterms / final, other conflicts
 - Tell us early and we will schedule alternate time
- Struggling in course
 - Come see me: I’m here to help
- Other problems:
 - Feel free to talk to me, I’m generally understanding and will try to work with you
 - Some problems may extend well beyond my course
 - Academic Advisor
 - DGS Team

Resources

- Piazza
 - Discussions, questions, etc
 - Good place to discuss lecture videos, ask questions
 - Announcements I make: required reading
 - Other discussions: strongly recommended reading
- Assignment submission
 - TBD
- Course Web Page

Recitation

- Recitation: Fridays
 - TA: John O’Hollaren
- This week:
 - VHDL
 - Using Quartus
 - Simulation in ModelSim

Wisdom From Prior Courses

- Some things I have learned from prior students
 - Cultural barriers to asking for help:
 - No question is “too simple” to ask me
 - Office hours are not just for the advanced students to ask complicated questions
 - You will not offend me if you ask me questions/tell me you do not understand
 - You are not “bothering me” if you come to office hours
 - That is why I have them: to help you!
 - Applies very broadly: I’m here to teach you and help you!
 - Doing badly -> “study harder”
 - Not the answer!
 - Work smarter, not harder.
 - Studying may not help at all!
 - Struggling? Seek my help.

Wisdom Continued

- Practice Exams
 - I post a practice midterm and a practice final... With solutions!
 - Use them!... and use them well...
 - I’ve heard the following:
 - “I tried the practice exam, and didn’t do well... but just hoped the real exam would be easier”
 - “I skimmed the practice exam and figured I could do the questions if I tried”
 - “I started with the solutions, and they all made sense, so I figured I would do fine.”
 - “I didn’t have time to try the practice exam. I was too busy studying [for this class].”
 - Take the practice exam, like a real exam (time constraints too!)
 - Check your answers after you finish.
Processors are made of **transistors**
- Electrically controlled switches (more on this later)
- Anyone have any idea how many transistors are in a modern chip?

2.6 BILLION

How do you put together 2.6 Billion of anything
- ...and make sure the product works right?
- ...in every corner case
- ...and is really fast
- ...and do it within a reasonable budget/timeframe?

More fundamentally, how do you engineer any large system?

Abstraction: The Key to Computer

- Abstraction: Divide interface from implementation
 - Interface: how it's used
 - Implementation: how it does it
- Build larger components from smaller ones
 - Larger ones use interface of smaller ones to do tasks
 - Don't care about implementation
- Tasks can be split between engineers:
 - You make a piece that does xyz, and I'll use it to do my job
- Components can be re-used
 - Also good: making them generic, so they can be re-used more

Other key to engineering: tools

- Processors designed in Hardware Design Languages
 - Verilog
 - VHDL
 - Learn one: you can pick the other easily

- You don't layout ever transistor by hand...
 - Instead you write a description of the hardware in an HDL
 - ...a lot like a programming language...
 - ...then run it through synthesis tools
- We'll use VHDL and Quartus
 - With ModelSim to simulate
 - Friday's Recitation

Levels of Abstraction

- Transistors: "electrical switch"
 - Can go lower (those with EE background have)
 - ...but no need for us
- Gates: a few transistors
 - Implement logical functions: And, Or, Nor, Xor
- Meaningful logic elements: a handful of gates
 - Combine into meaningful elements: muxes, 1-bit adders, flip-flops
 - May build larger items: N-bit adders from 1-bit adders
- Large elements (stages, units): combining logic elements
- Core
- Chip: now with multiple cores
A Different Kind of Abstraction

- Previous discussion: abstraction to build a processor
- Also: abstraction to use a processor
 - How/why?

A Different Kind of Abstraction

- Previous discussion: abstraction to build a processor
- Also: abstraction to use a processor
 - How/why?
 - Need software that can use the processor
 - Software should not rely on HOW processor is implemented
 - Abstraction between hardware implementation and interface
 - Interface = ISA = contract between hardware and software
 - Implementation: can vary from generation to generation
 - Consider x86
 - Can take a program written for an i386 (1985)
 - ...and run it on a modern core in 2012

Wrap up there for the day

- We’ll end there for the day
- Remaining time:
 - Any questions I need to take individually

- Next time:
 - Digital Logic: transistors to gates
 - Start reading Ch1 and Appendix C