Last time....

(Almost) every class will start with the same question:
- Who can remind us what we talked about last time?
 (besides course policies)

- Abstraction
 - Interface vs Implementation
- Tools
 - VHDL, Quartus
- Transistors and Gates
 - More on this today

Power (Vcc) and Ground (Gnd)

- Two supply rails:
 - Power (aka Vcc, sometimes called Vdd), e.g., +1.0 V
 - Logically, 1
 - Ground (Gnd, or Vss), e.g., 0 V
 - Logically, 0
 - I’m going to use Vcc/Gnd because that’s what Quartus uses

Wires

- A wire (or other conductor) causes current to flow
 - Attempts to equalize voltage
 - Water analogy: think of a pipe

- Water analogy
 - Power: think of this as a pump, pushing water in
 - Ground: think of this as a pump sucking water out
Short circuit

- Short circuit: direct connection from power to ground
 - Very high current (think of fast, continuous flow of water)
 - Generates a lot of heat
 - Destroys your chip
 - Very bad!

Switching

- Suppose instead we had some sort of switch
 - Think “valve”
 - Here, top connection conducts, connecting A to Vcc
 - Think of A as a pipe, pumped full of water
 - The bottom half resists (think closed valve) insulating A from Gnd
 - The water in A cannot get sucked down

Switching

- If we switch our connection…
 - Current flows as A changes voltage levels
 - Think of a pipe draining out as its connected to suction
 - Connection to power is closed, so no short circuit

Transistors: Electrically controlled switches

- Two types:
 - NMOS (left: no circle):
 - Conducts when gate is 1, resists when gate is 0
 - Connect source to either Ground or (Drain of another NMOS)
 - PMOS (right: circle):
 - Conducts when gate is 0, resists when gate is 1
 - Connect source to either Vcc or (Drain of another PMOS)

CMOS: Complementary MOS

- CMOS (most common, all we care about):
 - Put PMOS and NMOS in complementary fashion
 - Either PMOS conducts or NMOS conducts, but not both
 - Form a logic gate
 - Input (s): connected to gates of transistors
 - Output: connected to drains

CMOS: Complementary MOS

- Let’s see how this works.
 - Suppose Input = 1 (circuitry to control input, not shown)
 - PMOS transistor resists
 - No connection between Output and Vcc
 - NMOS transistor conducts
 - Connection between Output and Gnd
 - Output is 0
CMOS: Complementary MOS

- Now suppose Input changes to 0
 - PMOS transistor conducts
 - Connection between Output and Vcc
 - NMOS transistor conducts
 - No Connection between Output and Gnd
 - Output is 1

Switching delays

- Note: this doesn’t happen instantly
 - There is some delay as these change
 - Imagine again, pipes full of water
 - Draining out input pipe takes time...
 - Once its drained enough the valves start to change...
 - Filling the output pipe takes time
 - Factors the affect the delay
 - Voltage: analogous to water pressure
 - Higher voltage = faster switching, but more power/energy
 - Resistance: analogous to pipe narrowness
 - Lower resistance = faster switching
 - Capacitance: analogous to pipe volume (how much to fill)
 - Lower capacitance = faster switching
 - Calculating delay = hard, so we let our tools do it

Our first logic gate: The inverter

- This circuit is a logic gate: inverter or “NOT gate”
 - Gives logical negation of its input
 - Input = 0, Output = 1
 - Input = 1, Output = 0
 - Typically, just draw the gate, instead of the transistors:

Let’s build a more interesting gate

- Next, let us build a 2-input NOR gate
 - Here is a truth table for NOR
 - Shows output values for all possible inputs
 - Output = 1 when A and B = 0
 - Connect PMOS in series
 - (Not A) and (Not B)
 - Output = 0 when A or B = 1
 - Connect NMOS in parallel
 - Not (A or B)
 - Note: two formulas are logically equivalent (DeMorgan’s Laws)
 - PMOS formula has NOTs on inputs
 - NMOS formula has NOT on output
(why?)

Our first logic gate: The inverter

- (Small) Example of abstraction
 - Interface: “do logical negation”
 - Implementation: how to hook up the transistors

The NOR Gate

- NOR Gate
 - PMOS in series (both A and B must be 0 to get 1)
 - NMOS in parallel (either A or B at 1 results in 0)
- Side note: real chips have several layers to route wires
 - 3D drawing is hard, just label inputs
The NOR gate
• NOR Gate
 - Same gate, just changed B’s value to 1
 - Now output = 0
 - PMOS connected to B resists, blocking connection to Vcc
 - NMOS connected to B conducts, forming connection to Gnd

Let’s build a more interesting gate
• I’ll let you all try a 2-input NAND gate
 - Here is a truth table for NAND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean Gates
• Actually a bunch of standard logic gates:

NAND (a, b)
AND (a, b)
OR (a, b)
XOR (a, b)
NOR (a, b)
XNOR (a, b)

Drew’s Guide to Remembering your Gates
• This one looks like it just points its input where to go
 - It just produces its input as its output
 - Called a buffer
 - (won’t really worry much about these)
Drew’s Guide to Remembering your Gates

- This one looks like it just points its input where to go
 - It just produces its input as its output
 - Called a buffer

- A circle always means negate

Drew’s Guide to Remembering Your Gates

- And Gates have a straight edge, like an A (in AND)

- OR Gates have a curved edge, like an O (in OR)

XOR looks like OR (curved line)
- But has two lines (like an X does)

- Can put a dot for XNOR
- XNOR is 1-bit “equals” by the way

Multi-input gates

- So far gates have had 1 or 2 inputs
 - Can have more, though typically stop at 3 or 4
 - Symbols stay the same, just have more input lines

Three input NOR Gate

- Similar to two input, more transistors
 - Slightly slower
Complimentary: very important

- Complementary nature: very important
 - Without it, we have a problem
 - Here: both PMOS and NMOS in parallel...
 - \(A=1, B=0 \) (or \(A=0, B=1 \)) forms short-circuit
 - Chip catches fire 😞

- With more than 2 inputs, can get very complicated
 - Are the PMOS and NMOS complimentary here?
 - We can go the other way: transistors -> formulas
 - Check if formulas logically equivalent

What about... AND?

- Saw and did NAND, but what about AND?
 - Truth table on the right...
 - PMOS formula: NOTs on inputs
 - NMOS formula: NOT around the outside
 - \(\text{AND gate is really a couple gates squished together} \)
 - Not (Nand (A,B))
 - Nor(Not A, Not B)

- The AND gate
 - A NAND gate followed by a NOT gate
 - Also a good example of how gates connect together
 - Output of one gate goes to input of another
Speaking of transistors…

- Moore’s law:
 - Transistor density doubles roughly every 18 months
 - Has been going on for many years (~1970)
 - Self-fulfilling prophecy?
 - Ending soon? … We’ve heard that before, but….
 - Commonly stated as “computers get faster” … why?

Moore’s law and speed

- How are size and speed related?
 - Historically: clock frequency ("How many MHz/GHz")
 - How fast do the transistors switch (more on this later)
 - Has leveled off: Diminishing returns, power inefficient,…
 - Now: put more in same chip area
 - Larger caches
 - Better (bigger) predictors
 - …
 - Future: ??????
 - Significant concern among micro-architects
 - Reason: power density

Power and Energy

- We won’t focus too much on power and energy, but…
 - Very important concerns these days, so at least some mention
 - Energy costs money (power bills + cooling)
 - Water analogy: think total water pushed in/sucked out of system
 - Power: energy per time
 - Water analogy: How fast are we pumping in water
 - Power => Heat. Heat must be cooled, physical limits on cooling
 - Previously:
 - Smaller transistors => lower voltages => less power/transistor
 - More transistors / area
 - Power density (power/area) held roughly constant
 - Now:
 - Reaching voltage scaling limits
 - Increasing power density = problems

Going forwards: Mostly design with gates

- Going forwards, will mostly design from gates
 - Abstract away transistor level implementation
 - More on this next time…

Next Time…

- Next time, we’ll delve into Combinatorial Logic
 - Putting gates together to do useful things

- Reading:
 - Continue to read Chapter 1 and Appendix C

- Homework:
 - Homework 1 will be out soon
 - Keep an eye on Piazza
 - I’ll also post the code for the lab door there soon