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This paper explores the architectural challenges introduced by emerging bottom-up fabrication of 
nanoelectronic circuits. The specific nanotechnology we explore proposes patterned DNA 
nanostructures as a scaffold for the placement and interconnection of carbon nanotube or silicon 
nanorod FETs to create a limited size circuit (node). Three characteristics of this technology that 
significantly impact architecture are 1) limited node size, 2) random node interconnection, and 3) 
high defect rates. We present and evaluate an accumulator-based active network architecture that is 
compatible with any technology that presents these three challenges. This architecture represents an 
initial, unoptimized solution for understanding the implications of DNA-guide self-assembly. 
 
Categories and Subject Descriptors: B.2.1 [Hardware]: Arithmetic and Logic Structures – Design Styles; B.4.3 
[Hardware]:Input/Output and Data Communications - Interconnection Subsystems; B.6.1[Hardware] Logic 
Design – Design Styles; B.7.1[Hardware] : Integrated Circuits – Types and Design Styles; C.0[Computer 
Systems Organization]: General; C.1.3[Computer Systems Organization]: Processor Architectures – Other 
Architecture Styles 
General Terms: Design, Performance  
Additional Key Words and Phrases: accumulator ISA, active network, carbon nanotube, DNA, defect isolation, 
defect tolerance, nanocomputing, nanoelectronics, reverse path forwarding, self-assembly. 
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1. INTRODUCTION  

The semiconductor industry’s roadmap identifies a “red brick wall” beyond which it is 

unknown how to extend the historical trend of ever-decreasing CMOS device size. 

“Eventually, toward the end of the Roadmap or beyond, scaling of MOSFETs will 

become ineffective and/or very costly, and advanced non-CMOS solutions will need to 

be implemented.” [International Technology Roadmap for Semiconductors, 2002 Update, 

Difficult Challenge #10] 
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Technology change is fuel for architectural innovation. Evolutionary changes in 

CMOS have inspired research on several important topics including wire dominated 

designs, power dissipation, and fault tolerance. A revolutionary technology change, such 

as replacing CMOS, is a potentially disruptive event in the design of computing systems. 

Emerging technologies for further miniaturization have capabilities and limitations 

that can significantly influence computer architecture and require re-examining or 

rebuilding abstractions originally tailored for CMOS. This paper explores the 

architectural challenges introduced by emerging bottom-up fabrication of nanoelectronic 

circuits and develops an architecture that meets these challenges.  

We focus on one specific nanotechnology in this paper: DNA-guided self-assembly 

[Seem99] of carbon nanotube field effect transistors (CNFETs) [Bach01,Fuhr01,Huan01] 

and wires. To place and interconnect these components, we propose using patterned DNA 

nanostructures [Yan03b] as a scaffold to which we attach carbon nanotubes. The DNA 

nanostructures create a limited size circuit (node) of CNFETs. DNA-guided self-

assembly can also provide a scaffold for metal that forms the interconnect between nodes, 

but without the control available in the patterned nanostructures, thus producing a 

random interconnect. There are three aspects of this technology that significantly impact 

architecture: 1) limited node size, 2) random interconnection of nodes, and 3) high defect 

rates. Our goal is to develop an appropriate architecture that can be implemented in any 

technology with these characteristics. We also enumerate several important issues to 

address during architectural development. 

There are likely many possible approaches to developing a functioning system. Our 

goal in this work is not to determine the best approach, rather it is to simply obtain one 

approach. Therefore, in this paper, we adopt the philosophy of “make it work first, 

optimize later.” We present one potential solution, an active network architecture with an 

accumulator-based ISA. The limited node size prevents the design of a single node that 

can perform all operations. Instead, we design different node types (e.g., add, memory, 

shift) based on node size constraints. A configuration phase at system startup maps out 

defective nodes and links, organizes a memory system, and sets up routing in the 

network. To execute, an instruction searches for a node with the appropriate functionality 

(e.g., add), performs its operation, and passes its result to the next dependent instruction. 

In this active network execution model, the accumulator and all operands are stored 

within a packet rather than at specific nodes, thus reducing per-node resource demands. 

The active network execution model enables us to encode a series of dependent 

instructions within a single packet. 



This architecture matches our technology characteristics since it 1) allows for 

differing node types with specialized functionality, 2) tolerates a random interconnection 

of nodes, and 3) tolerates node and interconnect fabrication defects. While the 

architecture has limitations, our design demonstrates that it is possible to build a general 

purpose computing system using self-assembled nanoelectronic devices despite severe 

technological constraints. As a first step, the nano-scale active network architecture 

(NANA) does remarkably well and provides valuable lessons for future designs. We 

believe that NANA is a necessary first step toward exploiting nanotechnology’s potential 

to overcome the “red brick wall.” The contributions of this paper are: 

• We present a list of challenges that are likely to be encountered by system architects 

when building a system using self-assembled networks of simple computational 

circuits. 

• We adapt an existing algorithm to provide defect isolation for node defect rates up to 

30%. 

• We propose and evaluate a general purpose architecture built using self-assembled 

networks of simple computational blocks, demonstrating that we can build a 

computing system despite the hurdles presented by the underlying technology. 

• We identify key aspects of the architecture that need to be improved further to 

achieve better performance. 

The rest of this paper is organized as follows. Section 2 describes DNA-guided self-

assembly of nanoelectronic components and Section 3 discusses the architectural 

implications of this technology. We describe our proposed architecture in detail in 

Section 4 and present an evaluation of the architecture using two illustrative examples in 

Section 5. Section 6 discusses related work and Section 7 concludes. 

2. EMERGING NANOTECHNOLOGIES 

In this section, we describe the specific nanotechnologies used in this paper. We discuss 

the electronic components (Section 2.1), DNA self-assembly of these components into 

circuit nodes (Section 2.2), and the large-scale interconnection of these circuit nodes 

(Section 2.3). 

2.1. Carbon Nanotube Electronics 

There are many choices for constructing nanoelectronic devices and nanowires [Bach01, 

Cui01,Huan01, Mart99, Tans98, Tour00]. One such promising nanoelectronic device is a 

carbon nanotube field effect transistor (CNFET) [Fuhr01, Jave04, Kim04, Tans98, 

Wind02], in which application of a gate voltage modulates the conductivity of a 

semiconducting nanotube. Recent advances enable the separation of metallic nanotubes 



from semiconducting nanotubes, precisely controlling the length of individual nanotubes 

[Stra03, Zhen03] and self-assembly of carbon nanotube based electronic devices 

[Haza04]. Therefore, we could use both types of carbon nanotubes to construct logic 

gates, memory (e.g., with cross-coupled NOR gates), and circuit interconnect. Other 

potential materials (e.g., nanorods [Mart99], silicon nanowires [Cui01,Huan01]) could be 

substituted for the carbon nanotubes without loss of generality in our architectural 

analysis. 

To explore the potential of CNFETs, we simulate several circuits using a customized 

SPICE 3f5 kernel that models CNFET behavior in logic gates [Dwye04b]. We compare 

CNFET-based logic gates with CMOS using ITRS target values and some data from 

industry processes. Figure 1 shows a NAND gate delay for each approach. To obtain 

these values we load each circuit output with four inverters (FO-4) and pass a square 

input signal through a series of four inverters to each circuit input. We derive the CNFET 

I/V behavior, parasitic capacitances, and inductances from geometric and literature values 

[Burk03, McEu02]. Our results indicate that CNFET circuit performance is deep within 

the “red brick wall” predicted by the ITRS. Industry data shows much better performance 

for CMOS NAND gates, but the improvements across process generations is slowing 

down. The CNFET results are also pessimistic, as the theoretical limit is significantly 

higher [Dürk04]. The added benefit that CNFETs are amenable to self-assembly makes 

this an attractive alternative, or supplement, to silicon device technology. 

2.2. DNA Tiles and Nanostructures 

The precise placement 

and interconnection of 

individual carbon 

nanotubes remains an 

area of diverse 

research. These 

integration challenges 

and their impact on 

higher-level designs 

are shared by other 

emerging technologies 

(e.g., silicon 

nanowires, quantum 

dots, etc.). Since these devices are smaller than the resolution of top-down 
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Figure 1. Nanoscale Device Performance 



photolithographic methods, research has explored various techniques for bottom-up self-

assembly. 

To overcome the challenge of nanoelectronic integration, we propose using DNA 

self-assemblies to produce patterned nanostructures onto which we can programmably 

attach carbon nanotubes. DNA’s well-known double-helix structure is formed through its 

well-understood base-pairing rules—adenine (A) to thymine (T) and cytosine (C) to 

guanine (G). By specifying a particular sequence of base pairs on a single strand of DNA, 

we can exploit the base-pair rules as organizational instructions [Seem99].  

These DNA tags can be used to create 2D patterned nanostructures [Winf98]. For this 

paper we focus on a particular structure that creates a ‘waffle’-like lattice with repeating 

cavities of ~16 nm x16 nm and 4 nm separation between cavities [Yan03b]. This type of 

lattice has been experimentally demonstrated and can achieve sizes that extend to 3 µm 

on each side (i.e., more than 150 cavities on a side). 

Recently, we demonstrated the ability to place aperiodic patterns on a smaller lattice 

[Park06], which could enable the placement of carbon nanotubes or nanowire transistors 

[Skin05] at arbitrary locations in the lattice. Figure 2a shows an atomic force microscopy 

(AFM) image of a 80 nm X 80 nm lattice with the letter ‘A’ patterned on it. We can place 

and interconnect carbon nanotubes by forming tags (Figure 2b) at specific points on the 

lattice [Dwye05, Yan03a] and using a recently demonstrated technique for attaching the 

appropriate complementary DNA tags to carbon nanotubes [Dwye02]. Connections 

between nanotubes are formed using a technique called electroless plating [Brau98].  
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a) Patterned letter ‘A’ on 

DNA-lattice 

b) Proposed patterning method for DNA-lattice and 

carbon-nanotube self-assembly 

Figure 2. A DNA scaffolding for carbon nanotube circuits 



The technologies described in this section provide a set of potential building blocks 

for constructing nanoscale systems, and more details are provided elsewhere [Patw04]. 

The demonstrated operation of CNFETs and the ability to attach DNA tags to them make 

this a promising nanoelectronic technology. The DNA self-assembly technique is 

independent of the specific nanoelectronic device used, however the limited size of each 

lattice (node) presents challenges for creating large sophisticated circuitry. We now 

discuss how to interconnect these nodes into a computational substrate. 

2.3. Large-scale Interconnection  

Using inexpensive laboratory equipment we could potentially use self-assembly to 

simultaneously build as many as 1012 identical, but small, nodes. This number of nodes, if 

placed 0.25 µm apart, would cover a 325 cm X 325 cm area, or the equivalent area of 

~150 wafers (300 mm diameter). Although the size of an individual node is well above 

the minimum feature size of photolithography, the number of nodes fabricated through 

self-assembly limits how heavily the overall process can rely on conventional patterning. 

Self-assembling nodes onto a substrate at well-defined places is also difficult without 

“naming” each placement site (pick and place methods will not scale to this number of 

components). Even with DNA tags on the substrate, the nodes are not guaranteed to fall 

into place precisely. Most conventional architectures require precise placement and 

interconnection between circuits. Therefore, even if we could use a conventional 

photolithographically patterned network to interconnect nodes, the result would be a 

random interconnection due to 

the random placement of nodes 

on the substrate. This is the 

sacrifice a self-assembly process 

imposes: precision and control 

exist only at small length scales 

(~2 µm, for now).  

We use individual DNA 

strands that self-assemble 

between node edges, providing a 

scaffold for metal that forms an 

electrical connection [Liu04, 

Yan03b]. This larger scale process cannot deliver the precise control found in the earlier 

process used to assemble the nodes, but it can fabricate single wire interconnections 

between the edges of the nodes, as illustrated in Figure 3. In this paper, to simplify 

 
Figure 3. Schematic rendering of a self-

assembled  DNA interconnection network after 
metal decomposition 



presentation, we model system fabrication using a uniform grid and introduce defective 

nodes and links. Furthermore, preliminary evaluations comparing the grid approach to a 

physical model (based on a random walk) of DNA self-assembly of interconnections 

reveals the two techniques produce similar overall network characteristics. 

3. ARCHITECTURAL IMPLICATIONS 

The DNA-guided self-assembly process described in Section 2 presents several 

challenges that must be addressed when designing a system. The three primary aspects of 

the fabrication process are small-scale control of placement and connectivity within a 

single node (Section 3.1), large-scale randomness in node placement and interconnection 

(Section 3.2), and high defect rate (Section 3.3). These three aspects significantly impact 

architectural decisions (Section 3.4), particularly since conventional architectures assume 

precise control at both the small and large-scale. 

3.1. Small-scale Control 

The ability of DNA-guided self-assembly to achieve only small-scale control impacts 

architectural decisions in several ways. Three of the most significant are: limited space, 

limited coordination, and limited communication. 

Limited space.  A 150x150 node can have a maximum of 22,500 CNFETs, however on-

node interconnect will reduce efficiency since a node only has two-levels of interconnect. 

Furthermore, a portion of each node must be allocated as a “pad” for the DNA 

interconnect to other nodes. 

The limited node size presents a trade-off in node design. At one extreme, we could 

design just a single node type that contains both computation and storage capabilities. 

However, since storage and computation circuits must share the node, each may be 

severely limited in capability. Alternatively, we could design a few specialized node 

types, some devoted to computation and others to storage. Even when designing a 

specialized node, the limited space impacts architectural decisions. For example, large 

state machines are not an option within a node since there is insufficient space for state 

storage. Similarly, the number of bits available in a storage node may be limited, thus 

affecting an architecture’s word size. 

Limited communication. Without large-scale control, there is limited communication 

among nodes. Each node has four neighbors and there is no long haul communication. 

Furthermore, the connections between nodes are limited to single wires. Although the 

degree of each node or the number of connections between neighbors could be increased, 

each connection occupies precious edge space. In contrast, conventional CMOS designs 



exploit multiple metal layers for long-haul communication and large-scale control to 

create multi-wire connections between components.  

Limited coordination. Conventional CMOS designs rely on precise control during 

fabrication to create sophisticated circuits (e.g., 64-bit adder with carry lookahead). For 

our technology, if the most sophisticated node is a full-adder, then it is unlikely that 64 

such nodes can be coordinated to implement a 64-bit adder. Coordination among nodes is 

limited to immediate neighbors and it is difficult to a priori configure a group of nodes to 

operate in a coordinated manner. 

3.2. Large-Scale Randomness 

Our proposed self-assembly process provides excellent control at the small-scale, 

however it cannot achieve such control at large scales. The resulting randomness 

introduces some additional issues that architectures must address. 

Random node placement. The self-assembly process does not guarantee where any 

particular node will lie in the final circuit. Each node simply attempts to connect to other 

nearby nodes. The architecture and machine organization must accommodate this 

arbitrary placement of functional blocks. 

Random node orientation. Similar to the random node placement, the assembly process 

we envision does not provide control over node orientation. Any system design must 

tolerate arbitrary node orientations and cannot make a priori assumptions on orientation. 

For example, it is incorrect to assume that the “east” side of one node will connect to the 

“west” side of its adjacent node. 

Random node connectivity. Connections between nodes are not guaranteed to succeed 

during self-assembly. Therefore, it is possible for any node to have between zero and four 

functioning connections to its neighbors. The architecture must not make any a priori 

assumptions about available connectivity. When combined with random orientation, it is 

possible for nodes to connect in a triangular shape rather than the 2x2 grid one would 

assume with nodes that have degree four. 

3.3. High Defect Rates 

An inherent aspect of any self-assembly process is defects. Fabrication defects can 

influence node functionality and connectivity. Some interconnect defects cause the above 

problems with connectivity. While some aspects of fabrication can reduce the likelihood 

of defects (e.g., purification steps or overdesign of DNA tags), there will always be a 

significant number of defects and any architecture using these technologies must tolerate 

them. 

3.4. Architectural Challenges 



The above discussion exposes several aspects of this fabrication technique for nano-scale 

circuits that must be addressed by any architecture and its corresponding 

implementations. In this subsection, we enumerate several important challenges to 

developing an appropriate architecture for this emerging technology. This list is not 

exhaustive, but rather highlights some important challenges. 

Designing Nodes. The architect must decide what functionality to place in each node. 

Should there be homogeneous nodes or heterogeneous nodes? If heterogeneous, then 

what types of nodes? How does node design affect connectivity/communication with 

other nodes, and what primitives should be provided? 

Utilizing Multiple Nodes. Since individual nodes do not contain sufficient computation 

and storage to perform much useful work in isolation, an architect must determine how to 

exploit multiple nodes. This must be achieved given the above limitations on 

coordination, communication, placement, orientation, and connectivity.  

Routing with Limited Connectivity. Traditional routing techniques may not apply since 

there is limited space for the complexity of dynamic routing and there are insufficient 

guarantees on node placement and connectivity to use conventional static routing.  

Developing an Execution Model. The execution model embodies the software-visible 

aspects of the architecture and can be influenced by implementation constraints or 

instruction set requirements. For the envisioned fabrication technique, the execution 

model must overcome the severe implementation constraints outlined above while 

enabling a reasonable instruction set. 

Developing an Instruction Set. Programmable systems require an interface that enables 

software to specify operations. Typically this is achieved by the instruction set 

architecture (ISA). The ISA may be influenced by the underlying capabilities of the 

technology. Given our fabrication technique, the architect must design an appropriate 

ISA that supports the above execution model. 

Providing a Memory System. Storage is a crucial component of most computing 

systems regardless of the execution model. The ability to store values for future use and 

to name and find particular values is a necessary aspect of most computing paradigms. 

Interfacing to the Micro-scale. An important aspect of any nano-scale system is the 

interconnection to larger-scale components (e.g., micro-scale). This connection is 

necessary for at least providing an I/O interface for communication with the outside 

world. It may be possible for the architecture to exploit this interface in other ways. 

The challenge is to address each of these issues such that we arrive at a functioning 

system. There are likely many possible approaches to developing a functioning system. 



Our goal in this work is not to determine the best approach, rather it is to simply obtain 

one approach. With any emerging technology, we must limit the scope of studies to 

ensure forward progress. The remainder of this paper presents one potential architecture. 

4. AN ARCHITECTURE FOR SELF-ASSEMBLED NANO-ELECTRONICS 

As an initial approach to address the issues raised in  Section 3, we propose NANA, an 

active network architecture that is compatible with our fabrication technology. The 

architecture is like an active network [Tenn96] in that execution packets that contain 

instructions and operands search through a loosely structured sea of processing and 

memory nodes for the functionality that they need at each step of execution. This 

architecture matches our technology characteristics since it 1) allows for differing node 

types with specialized functionality, 2) tolerates a random interconnection of nodes, and 

3) tolerates node and interconnect fabrication defects. 

4.1. System Model 

The system model is a random interconnection of various node types, in which all nodes 

contain circuitry for communication and each node has some specialized circuitry (e.g., 

processing, memory, etc.). Groups of nodes are organized into cells. A node 

communicates with a neighboring node via a single link that is asynchronous and 

bidirectional (time-multiplexed on a single physical wire). Each cell has a via that is its 

connection to the micro-scale, and one of the nodes connected to the via acts as the 

anchor node for the cell. Inter-cell communication occurs through a micro-scale 

interconnection network. The memory nodes in each cell comprise a portion of the global 

memory space. Some fraction of nodes are configured as memory ports to provide an 

interface between execution packets and memory storage. Figure 4 illustrates our system 

 

a) 2D mesh of cells b) Nodes within a cell 
Figure 4. a) System Model.  b) Processing  nodes (P), memory nodes (M), memory 
port nodes(M*), anchor node (A), and via (V). This schematic is not to scale (w.r.t. 

nodes per cell) 



model. To impose structure on the interconnection network and the memory system, there 

is a configuration phase [Patw05] that occurs before any execution. Reconfigurable 

architectures [Culb96, DeHo02, Gold01, Heat98] have demonstrated that this approach is 

important to achieve high performance in the context of highly focused (i.e., aggressive) 

or highly defective technologies, including nanotechnology. We describe the purpose, 

beyond defect tolerance, and operation of the configuration in detail later in this section.  

While node functionality is heterogeneous, all nodes have some common 

responsibilities. Each node generates its own local clock (we choose a clock frequency of 

10 GHz, which is pessimistic given the data in Figure 1) and communicates 

asynchronously with its neighboring nodes using signaling techniques similar to push-

style pipeline systems. High level communication between two devices over a single wire 

can be managed using simple two- and four-phase single wire techniques [vB96]. Each 

node must also contain routing functionality for determining the outgoing link for an 

incoming packet (or the result of an operation). This circuitry maintains node state (e.g., 

currently processing a packet) and handles link contention.   

4.2. Execution Model 

The execution model relies on an accumulator-based ISA. Conceptually, the accumulator 

is initialized and then a sequence of operations are performed on the corresponding series 

of operands. The accumulator-based ISA reduces the need for widespread a priori 

coordination and communication among many components (e.g., associative lookup in 

issue queues), since the only data dependence involves the accumulator and instructions 

are processed in order [Kim02]. We support accumulator-based execution by forming an 

execution packet that contains the operations, the accumulator, and all operands in 

appropriate order. Instructions are executed in the order specified in the packet, as they 

are routed through the network and find the requisite functional units (or memory ports). 

Logically, each functional unit performs its specified operation, removes the operand and 

forwards the new accumulator and the remaining operands to the subsequent functional 

units. Each subsequent functional unit performs a similar sequence until all operations in 

the packet are completed. Memory operations generate memory packets that are handled 

by the memory ports, as discussed in  Section 4.5. Packet sequencing is achieved using a 

process called chaining, discussed in  Section 4.6. 

Our system and execution model enable significant parallelism by instantiating 

multiple execution packets within a cell and in multiple cells. While this parallelism is an 

important aspect of our architecture that fully exploits the capabilities of the underlying 



technology, in this paper we focus primarily on the operation of a single cell and 

sequentially instantiate execution packets. 

To augment the defect tolerance of configuration and to protect against transient 

faults we could add a signature vector to each packet and verify the integrity of a 

computation performed by the packet. The signature vector is operated on like the 

operands field of a regular execution packet with the exception that the initial signature is 

not consumed by the operation. The order of instructions will be reflected by a 

characteristic signature vector and can be used to determine if the nodes performing those 

operations were functioning properly during the signature calculation. This approach can 

be further augmented with redundant execution packets and a voting mechanism. 

4.3. Instruction Set and Packet Formats 

The format of an execution packet is: header, instructions, operands, tail. Specific bit 

patterns delineate field boundaries. The header is a fixed-length field that includes packet 

type and other metadata. The instructions field is a variable length list of opcodes in 

program order. The operands field is a variable length list of operand values. To 

accommodate the limited node size, we use a bit-serial implementation. The active 

network architecture and accumulator ISA are independent of this choice and provide an 

architecture that can scale with improvements in node capabilities (i.e., multi-bit 

operations). Figure 5 shows the execution packet format for our bit-serial 

implementation. The operands field is divided into bit-slices from least significant bit to 

most significant bit (from packet head to tail). Each bit slice starts with a bit from the 

accumulator and is followed by each bit (for the particular bit- slice) of the operands.  

Operands

n−1 n−1 n−1 n−10 0 0 0 111 1

Header Tail

Opcode 1 Opcode 2 Opcode N

Instructions

A  X  Y  Z ...A  X  Y  Z ... A   X   Y   Z   ...

 
Figure 5. Packet format. 



The instructions that this architecture supports must be bit-serial in nature and require 

little communication between bit slices. Many instructions are simple to implement with 

limited circuitry (e.g., ADD, SUB, OR, AND, XOR, NOR, NAND, compare, move) and 

require only small extensions to a bit-serial full adder circuit. Each operation requires 

only a small amount of information (e.g., carry-out bit) to be communicated to 

subsequent bit slices. This simplifies the implementation details of the circuits so that 

they will fit within the node size limits of the technology. Although each instruction is 

bit-serial, the bit interleaving enables parallel execution of consecutive operations in a 

pipelined manner. Instructions supported by NANA can be divided into nine categories 

and are listed in Table 1.  

The serial nature of this architecture and the limited node complexity of the 

technology makes certain operations difficult.  Table 2 lists several instructions specially 

designed to help overcome these difficulties. For example, right shifts (moving bits from 

the tail toward the head) are difficult because they require bits to be forwarded ahead of 

other bits unless entire operands are stored at the functional node. Since we assume that 

both operand storage and ALU-type functionality in a single node requires too much area 

for our limited node size, we exploit the stack-like nature of the operand stream to 

support right shifts. When a right shift is executed, it also places the result at the end of 

the operand stream. Thus, to execute a right shift, we buffer the field separator between 

bit slices and send out the next observed data bit before re-inserting the field separator 

into the packet bit stream. 

Instruction Type Instructions
Arithmetic ADD, INC, SUB, DEC, SHL, SHR 

Comparison COMPEQ, COMPGT, COMPLT, SETEQ, SETGT, SETLT, 
SETZ 

Operand Stream 
Control 

LDCONST0, LDCONST1, CPACC, MOV, DELOP, 
OPFLUSH, SWAP 

Logical AND, NAND, NOR, NOT, OR, XOR, XNOR, NOP 
Load LD [Mem], LDI [Mem] 
Store ST [Mem], STI [Mem] 

Conditional Store CST [Mem], CST_RST [Mem], CRST [Mem], CSTI [Mem], 
CSTI_RST [Mem], CRSTI [Mem] 

Unconditional Control 
Transfer JMP [Mem], CALL [Mem],JMPI [Mem],CALLI [Mem] 

Conditional Control 
Transfer 

CALLNZ [Mem], CALLZ [Mem], CALLNZI [Mem], 
CALLZI [Mem] 

Table 1.  NANA Instruction Set 



The bit-slice packet encoding also complicates memory operations. For example, a 

load requires all of its address bits to generate a request. If the address is in the operand 

stream, then it is impossible for the load to interleave the resulting data in the same 

operand stream since all the low order bits are ahead in the packet flow before the entire 

address is obtained. Similar difficulties exist for stores. Therefore a packet cannot both 

calculate an address and use it in the same packet. To address these limitations, we 

provide three specific types of memory addressing: immediate, constant address and 

indirect address. Constant addressing requires the address to appear in the instruction 

field of the packet. Indirect addressing supports indirection through a memory location 

that is specified as a constant in the instruction field of the packet. We also provide 

special instructions (JMP & CALL) for instruction sequencing (discussed in  Section 

4.6). Conditional execution is supported through status bits (e.g., condition codes) in the 

packet tail. Currently we support conditional store and CALL instructions that must wait 

to execute until the packet tail arrives so that they can examine the appropriate status bit. 

Instruction Operation 
MOV Move accumulator to end of operand stream 
SWAP Swap first and second operand 

SHR Shift accumulator right by 1 bit, move 
accumulator to end of operand stream 

DELOP/OPFLUSH Remove one/all operands from operand stream 

CPACC Create copy of accumulator at end of operand 
stream 

SET (EQ/GT/LT/Z) Set flag bit in tail if condition satisfied, consume 
accumulator 

COMP (EQ/GT/LT) Set flag bit in tail if condition satisfied, consume 
first two operands 

LDI [Mem]/ STI [Mem] Load/store indirect through constant address 
[Mem] 

CST [Mem]/CSTI [Mem] Conditional store direct (CST) or indirect (CSTI) 
to [Mem] (status bit in tail must be set) 

CST_RST [Mem] Conditional store to [Mem], reset status bit after 
performing store 

JMP [Mem]/JMPI [Mem] Fetch instructions into existing packet from direct 
(JMP) or indirect (JMPI) address [Mem] 

CALL [Mem]/CALLI [Mem] Create new packet using instructions from direct 
(CALL) or indirect (CALLI) address [Mem] 

CALLNZ [Mem]/CALLNZI [Mem] Fetch instructions into new packet if status bit is 
set (not zero) (direct/indirect) 

CALLZ [Mem]/CALLZI [Mem] Fetch instructions into new packet if status bit is 
not set (zero) (direct/indirect) 

Table 2. Definitions of a selected subset of instructions 



Programming NANA is similar to programming other accumulator based ISAs 

[CK98, Kim02, Kim03, Lavi78], however, care must be taken to account for system 

capabilities and constraints. For example, the ‘shift right’ instruction (SHR) is 

constrained by node resources to shift the accumulator and move it to the end of the 

operand stream, while the ‘shift left’ instruction (SHL) operates as expected (i.e., it shifts 

the accumulator left by one bit). Another constraint arises from the structure of the 

memory system - all loads must precede stores in a packet. Consider a simple code 

fragment (x=x+ *(y+a)) that computes a memory address (y+a) and then adds the 

contents of that location to another variable stored in memory. Due to the load-store 

ordering constraint, instructions must be divided into two packets.  Table 3 shows the two 

packets needed to implement the code segment, and how their fragments are arranged in 

memory. The first packet, starting at address 0x10, performs an address calculation (y+a) 

and stores the result in a third location, z. The last instruction, at address 0x20, chains this 

packet to the next packet, which starts at address 0x40. The second packet performs the 

addition of x with the value stored at the memory location pointed to by z, and stores the 

result into x (i.e., x=x+*z). This packet executes by first loading the value of x, then 

performing an indirect load on z (instruction at 0x44). Next, it executes the add and stores 

the result into x. This example illustrates some constraints that must be faced in 

programming NANA. We expect that, as the underlying technology matures, a richer ISA 

with more complex instructions will become possible, including efficient variable bit 

shifts, bit-serial multiplication and division. Until then, we compose these more 

sophisticated operations in software using simpler primitives. 

4.4. Interconnection Network: Finding Resources for Execution 

The active network architecture must enable packets to find what they need without 

deadlocking or livelocking, despite high defect rates and traveling through a randomly 

interconnected sea of nodes. To avoid request/response deadlock (i.e., fetch deadlock), 

the minimum requirement is three logical networks: one for execution packets, one for 

memory request packets and one for memory response packets. Each of these logical 

networks is irregular and must provide deadlock- and livelock-free routing. While we 

could implement these three networks using three virtual channels [Dall92] per 

Address Instruction NextPC Address Instruction NextPC 
0x10 LD y 0x14 0x40 LD x 0x44 
0x14 LD a 0x18 0x44 LDI z 0x48 
0x18 ADD 0x1A 0x48 ADD 0x4A 
0x1A ST z 0x1E 0x4A ST x 0x0 
0x1E CALL(0x40) 0x0 

 

   
Table 3.  Memory layout for two packets that compute x=x+*(y+a) 



unidirectional link, this unnecessarily increases the amount of buffering required on a 

single node. We reduce the requirement to two virtual channels per unidirectional link by 

creating distinct physical networks for execution and memory; we explain how this is 

implemented in Section 4.5. We also use wormhole routing since it requires the least 

buffering on each node (1 bit per channel). 

4.4.1. Imposing Structure with Gradients 

Virtual networks avoid fetch deadlock, yet each network must still provide deadlock- and 

livelock-free routing. Given our irregular networks, we create a spanning tree using the 

reverse path forwarding algorithm (RPF) [Dala78, Patw05] and then employ a variant of 

up*/down* routing [Schr91], a degenerate case of turn-model routing [Glas92], and back 

pressure flow control. The challenge is implementing these techniques with limited node 

functionality. 

To meet this challenge, we equip each node with two forms of communication: 1) 

broadcast and 2) routing along gradients [John96, Inta00]. Packet headers include 

information on the type of communication to use. Broadcast requires minimal state per 

node and is used during configuration only. Gradients reduce per-node resources while 

still enabling deadlock- and livelock-free routing. We use the RPF algorithm to create a 

spanning tree with a specific via as the root and establish a gradient with a specialized 

packet. Each node marks the link on which the gradient packet was received (i.e., points 

to its parent in the spanning tree) and broadcasts the packet to its other neighbors. A node 

will not broadcast gradient packets after having seen the first packet. This process can be 

generalized to any number of gradients if each node records an identifier for each 

gradient it detects. The broadcast algorithm terminates when all reachable nodes have 

received the gradient. There is no external action required to terminate the algorithm, and 

each node automatically stops forwarding broadcast packets when it has been configured. 

We use five gradients: one for each planar direction (north, south, east, and west) and 

an additional gradient that establishes cell boundaries and the direction toward the via in 

each cell (called the cell gradient). The planar gradients are established by starting the 

broadcast at the north, south, east, and west edges (or corners) of the system, 

respectively.  Figure 6 illustrates a gradient established from the upper left corner (north) 

in a 32x32 grid with a 30% defect rate. Defective nodes, not drawn in this figure, can 

cause islands of disconnected nodes such as the region near the via. 

 



Configuring Cells. The process is initiated at each via in parallel by broadcasting a cell 

ownership packet that includes a cell identifier. The cell gradient broadcast stops when its 

wave front collides with the wave front from an adjacent via. Nodes detecting a conflict 

in cell identifiers stop the broadcast, creating a boundary between cells, and record that 

they are boundary nodes. 

Tolerating Defects. Creating 

spanning trees using a broadcast 

flood maps out defective nodes 

and links, since no other node will 

have a gradient pointer to the 

defective node. If routing is 

restricted to follow a gradient, 

then packets will never be sent to a 

node that did not receive a 

gradient packet.  Figure 7 shows 

 
Figure 6. A 32 x 32 grid of memory and processing nodes with one established 

gradient (North) 
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Figure 7. Percentage of nodes reachable by 
gradient broadcast for varying defect rates 



the percentage of nodes that can be reached by a broadcast for increasing node defect 

rates. Each point on a curve is the average of ten simulation runs with different 

distributions of defects in the network. The different curves correspond to different 

network sizes. For defect rates up to 20%, the broadcast reaches most of the functional 

nodes. A majority of functional nodes is still reachable for defect rates up to 30%, beyond 

which we see a sharp drop in the number of nodes receiving the broadcast because 

increasingly large regions are isolated from vias. Our analysis also shows that it is better 

to broadcast the planar gradients from an edge than from a corner of a rectangular or 

square network of nodes. In general, a via with more nodes surrounding it has a better 

chance of reaching a larger set of nodes.  

Our defect model assumes that the routing circuitry for a node is either fully 

functional or not operational at all1.  We can tolerate shorts in the node interconnect, and 

we call such defects broadcast defects because they represent the unintentional broadcast 

(to more than one link) of packet bits. Such defects are difficult to avoid during 

fabrication and require an arbitration scheme, similar to fixed back-off media access 

schemes in networks. The asynchronous link controllers in each node can be designed to 

assert a link-good signal after a random interval of time after power up. The randomness 

can be introduced during the self-assembling process [Dwye03]. Every node monitors its 

links for the link-good signal and marks any link that has received more than one signal 

as defective. When the node’s internal random interval has elapsed, if the link is not 

already marked defective it asserts its own link-good signal on all links. This arbitration 

scheme identifies both shorts and opens on links between nodes. The nodes connected to 

the via essentially share a single link (the via) that appears as a broadcast defect. The 

result of this arbitration scheme is for a single node to remain actively connected to the 

via, thus acting as the cell anchor. 

Due to defects, some vias may not have a path to any of the four planar gradient 

destinations. This can be detected by monitoring the via at the micro-scale during the 

broadcast of each of the planar gradients. If the via fails to receive any of the gradient 

broadcast packets, it should be marked as defective and not participate in cell 

configuration. 

4.4.2. Execution Packet Routing 

                                                           
1 The general Byzantine defect model, in which defective nodes can produce arbitrary behavior, has been considered in the 
internet literature, but tolerating such defects requires a great deal of complexity at each node [Cast99].  

 



The spanning tree structure imposed by gradients provides the framework for packet 

routing. Execution packets and memory packets never share physical links and thus 

cannot block each other. Up*/down* routing on the spanning trees prevents routing 

deadlock and livelock. However, execution packets must be able to find the necessary 

resources for execution, and memory packets must successfully find the appropriate 

memory location, which responds if necessary. We discuss memory packet routing in  

Section 4.5.  

To avoid deadlocking execution packets, we simply follow a single gradient (up* on one 

spanning tree) on one virtual channel until we reach a cell boundary, then reflect the 

packet back into the cell on the opposite planar gradient but on the other virtual channel. 

Reflection only occurs if there are remaining instructions in the packet, otherwise a 

special packet is sent to the anchor node to indicate completion. We note that the header 

can run ahead of the operand stream allocating nodes for instructions (due to execution 

delay in a node). This approach can indefinitely bounce a packet between cell edges. The 

only constraint is that packet length be less than the total number of nodes in the round 

trip traversal. Since execution packets only traverse in the up* direction of the spanning 

tree, each node must only store a single pointer per spanning tree (the gradient direction). 

An execution packet’s ability to find the appropriate resources depends on several 

fabrication variables, including defect rates and the distribution of node types (evaluating 

this space is future work). In the next subsection, we describe how we can exploit the 

packet routing infrastructure to configure a fully addressable memory system in each cell. 

4.5. Memory 

Each cell represents a local namespace for memory and includes both data and 

instructions. The memory system must be able to (a) allocate (number or name) its 

locations, (b) provide an interface to execution packets, and (c) route memory packets 

(both requests to specified locations and responses back to requestors). 

4.5.1. Memory Allocation 

The memory network is a spanning tree rooted at the cell anchor. To configure memory, 

allocation packets are injected from the via through the anchor node, initially routed on 

virtual channel zero using any planar gradient. When an unallocated memory node 

receives an allocation packet, it records the address, marks itself as allocated, and sinks 

the packet. The second allocation packet received by this node is forwarded along the 

specified gradient, forming a branch in the network. For the third allocation packet, the 

node modifies the header to route the packet on virtual channel one along a planar 

gradient that creates a second branch in the network. Three fourths of the subsequent 



allocation packets arriving on virtual channel zero are forwarded along the first branch 

while the remaining packets use the other branch and switch to virtual channel one. 

Packets on virtual channel one are never modified. Cycles in the memory network are 

prevented by having an allocated node only accept configuration packets on the same 

physical link as its original allocation packets.  

 Memory ports are allocated after memory nodes and must have three good links 

(excluding the link used by the incoming packet) with three distinct planar gradients. 

Ports never change an allocation packet gradient, thus keeping the remaining two links 

free for the execution network. Memory ports are unnamed except for one port where we 

initiate execution. Non-memory nodes between memory nodes route allocation packets 

according to the specified gradient and reserve the corresponding links only for memory 

 
Figure 8. Memory Network. 32x32 grid with a fully configured memory network, 

showing one gradient (west) 



operations. A second planar gradient configuration creates new spanning trees that do not 

include any of the memory network links, thus creating two separate networks.  Figure 8 

illustrates the allocation of 64 memory locations and 64 ports on a 32 x 32 grid with a 3% 

defect rate. For illustration only, we include only the West planar gradient on the 

execution network and use a low defect rate on a small grid. Clearly, in this memory 

system the anchor node could be a bottleneck. 

4.5.2. Interfacing Execution and Memory 

The interface between the execution network and the memory network is controlled by 

memory ports that assume responsibility for handling all memory operations, including 

the JMP/CALL instructions for packet instantiation (see  Section 4.6). When an execution 

packet needs to perform a constant or indirect memory operation, it searches for a 

memory port. A memory port servicing an execution packet stalls the execution packet, 

but at different points for loads and stores. Since load addresses are contained in the 

instruction field, the load can immediately issue and only stall the packet when the first 

bit of the operand stream arrives. Thus, the header continues searching for resources for 

subsequent instructions. When the memory port that initiated the load receives the 

response, it interleaves the memory contents into the execution packet’s operand stream, 

enabling the operand stream to continue forward. A store must see the entire operand 

stream to extract the data, and after the node issues the store, it stalls the packet until the 

store is acknowledged. This acknowledgment ensures inter-packet memory 

disambiguation. Memory ports also support indirect memory operations which require 

back-to-back memory operations: one to load the address and the other to access the 

contents at that address. We implement this by first issuing a constant load to obtain the 

address, then using the result to generate another address for the load or store. 

4.5.3. Routing Memory Packets 

Memory packets are routed on either a request or response virtual network (two virtual 

channels per unidirectional link) that each obey up*/down* routing. Routing in the up 

direction follows the cell gradient up the spanning tree to the anchor node where the 

packet is broadcast in the down direction. Broadcasting is necessary since the destination 

memory node or port could be anywhere in the memory network. Loads require two full 

traversals of the memory network. However, since the anchor node is a serialization point 

for memory operations, it can acknowledge a store by broadcasting down the response 

network. Memory operations for addresses outside the originating cell are passed by the 

anchor onto the microscale network. 

4.6. Packet Instantiation and Chaining 



Entire execution packets (from header through tail) can be stored in memory by 

fragmenting them across memory nodes. Each fragment contains a portion of the 

execution packet and the memory address of the next sequential fragment (zero indicates 

termination). The fragments are written into memory using the micro-scale interface to 

inject store requests into the memory network. Packets are reassembled and instantiated 

on the execution network at a memory port using special sequencing instructions. Initial 

execution starts by using the micro-scale interface to inject one of these instructions on 

the memory response network for the named memory port. 

Chaining is the process of sequencing instructions or packets under software control 

by including a special instruction as the last operation. We implement two forms of the 

sequencing instruction: 1) CALL creates an entirely new packet, but stalls until all 

previous instructions are complete (i.e., it sees the packet tail), and 2) JMP injects new 

operations into the existing packet by stalling the operand stream, thus enabling 

accumulator forwarding. Conditional CALL is easily supported since the instruction 

waits for the packet tail. Execution of one packet can overlap with its dependent packet’s 

search for functional and memory nodes. We leave full exploration of the instruction set 

and various forms of parallelism as future work. 

4.7. Improving Node Utilization 

While the four planar gradients allow us to route execution packets in the cell, we find 

that only a small fraction of all execution resources in a cell are used. This is because the 

route taken by the execution packet depends on its insertion point in the cell, and the 

gradient that is being used to route. The execution network within the cell does not have a 

well defined structure if we use planar gradients for routing. To improve the number of 

nodes reachable by execution packets, we need to modify the structure of the execution 

network within a cell. 

We add a second via and anchor node (“execution anchor”) to the cell. This via is 

used only by the execution network. Once the memory system has been created, we 

broadcast an “execution” gradient in the cell. This gradient reaches nodes that have not 

been included in the memory network and any ports on the memory network. This allows 

us to create an execution network with better structure by performing a depth-first 

traversal on the spanning tree created during the broadcast of the execution gradient. All 

execution packets follow this depth-first order ensuring high execution node utilization. 

The memory and execution networks now include most of the nodes in the cell, 

potentially allowing the use of about 97% of the cell (some nodes can become isolated 



during the creation of the memory network). However, as we discuss in Section 5.5, there 

are other aspects of NANA that limit node utilization. 

5. PRELIMINARY EVALUATION 

This section presents a preliminary evaluation of NANA. Our goal is to demonstrate the 

viability of the approach and to provide more details on execution. CNFET device 

characteristics suggest that this technology may have significant advantages over silicon 

in terms of power, delay, and cost. We are collaborating with physical scientists to 

fabricate and characterize CNFET electronics, which will enable quantitative evaluation. 

We have developed a tool chain to support automated circuit design [Dwye04b, 

Dwye04c] and architectural evaluation. We first present an initial node floorplan, 

describe our simulation framework and then demonstrate system operation and provide 

preliminary performance results using two simple programs: 1) Fibonacci is strictly an 

illustrative example, and 2) string matching reveals the potential to exploit massively 

parallel computation with nanoelectronics. We conclude the section with an analysis of 

the strengths and weaknesses of the proposed design. 

5.1. Node Floorplan 

 Figure 9 shows an initial 

floorplan for a 3 µm X 3 µm 

node that includes both an ALU 

and 16 bits of data storage with 

8-bit addresses. The four semi-

circles around the node 

represent contact points for 

inter-node links. The four 

transceivers control data 

transfer between the node and 

its neighbors. Configuration and 

gradient state is stored in the 

block denoted ‘Gradients’, 

while control logic is distributed in the four blocks marked ‘Control’ one of which is also 

responsible for decoding instructions (marked ‘Control/Decoder’). The small unlabeled 

blocks next to transceivers are the interface between the transceiver and the control/data 

logic of the node. The largest area is consumed by the various state machines sized 

according to the requirements derived from our simulator. Our current implementation 

assumes specialized nodes, enabling more area for control and buffering. 

 
Figure 9. Node floorplan 



5.2. Simulation Framework 

We evaluate NANA using a custom event driven simulator written in C++ that simulates 

the system in detail. The simulator models activity within each node down to bit 

exchanges between components. The simulator models all node types and the system at 

all stages, including gradient broadcast, memory configuration, execution configuration 

and run-time. It allows the user to vary a number of system parameters including the size 

of the network, node type distribution, event latencies, defect rate, and number of cells 

being simulated. Each cell holds a different part of the global address space and can 

execute different programs that are provided as input to the simulator. All events in the 

simulator are assumed to be a multiple of the clock cycle time (0.1 ns). The simulator 

accepts user-defined network topologies, or it can generate regular grid based topologies. 

For simplicity, we use a grid-based topology with a single 1024 node cell and a 3% node 

defect rate in our evaluation. As long as the defect rate is low (about 15% or lower), the 

network topology has little effect on performance. 

5.3. Fibonacci 

In this section we consider the simple code that computes the Nth Fibonacci number.  

Table 4 shows the packet needed to implement Fibonacci for N >= 1 (N is stored at 

address 0x30), and how the fragments are arranged in memory. For simplicity, each 

instruction is a separate fragment. The first packet, starting at address 0x10, loads the 

value N (counter), which specifies which Fibonacci number to compute, and the 

constants 1 and 0 (pre-loaded into 0x32 and 0x34 to begin with). The fourth instruction 

decrements the counter and sets the condition bit in the tail if the counter is zero. The 

counter is then stored back at address 0x30. The seventh instruction swaps the first two 

operands in the operand stream. The eighth instruction creates a copy of the accumulator 

at the end of the operand stream. The ninth instruction (ADD) computes the next 

Fibonacci number. If the condition flag in the tail is set, this new computed value is 

stored at address 0x36. The two remaining operands are then stored at locations 0x34 and 

0x32. Finally, if the condition flag is not set, we loop back to the beginning using a 

Address Op Next Address Op Next 
0x10 LD (0x30) 0x14 0x26 CPACC 0x28 
0x14 LD (0x32) 0x18 0x28 ADD 0x2A 
0x18 LD (0x34) 0x1A 0x2A CST (0x36) 0x2E 
0x1A DEC 0x1C 0x2E ST (0x34) 0x32 
0x1C CMPZ 0x20 0x32 ST (0x32) 0x36 
0x20 ST (0x30) 0x24 0x36 CALLZ (0x10) 0x0 
0x24 SWAP 0x26 

 

   
Table 4. Packet Layout 



CALLZ instruction, creating a new packet. If the condition flag is set, the instruction is 

not executed, terminating the program.  Figure 10 illustrates the creation of this packet 

with a bootstrapping JMP. In  Figure 10a, we show the bootstrapping packet inserted at 

the via in the execution network. This packet is routed along the execution network until 

it finds a memory port. The JMP instruction in the packet executes at the port and starts 

fetching data from location 0x10 (where the Fibonacci code is stored). The data returned 

from location 0x10 (Figure 10b) is divided into two parts: 1) data for packet and 2) next 

address. The data for the packet (in this case, a LD opcode) is inserted into the packet and 

sent out on the execution network. The next address is used to fetch the next fragment of 

code (in this case, from address 0x12). The data returned from location 0x12 (Figure 10c) 

provides the address for the LD instruction and the address of the next fragment of code. 

This process is repeated until we get a data fragment back with 0x00 as the next address 

(Figure 10d). This indicates that we have finished executing the JMP instruction. The 

final packet before execution begins is shown in Figure 10e. It is important to note that 

execution can begin while the JMP instruction is still executing.  

To demonstrate our system operation, we simulate its behavior at the bit serial link 

level executing the above packets. We model a single 32x32 cell with 25% ALU nodes 

and four corner vias for planar gradients. We assume a random distribution of defective 

nodes, with 3% of all nodes being defective. The memory system in the cell includes 64 

16-bit memory nodes and 80 ports. A system using a depth-first execution network would 

Header TailData Separators0x10JMP Header TailData Separators

0x12LD

address
Next 

0x10

Header TailData Separators

0x14

LD

address
Next 

0x300x12

(c) Second packet fragment  (from 0x12)

0x000x10
Next 
address (Stop
fetching)

Header LD0x30 TailData SeparatorsCALLZ

(d) Last packet fragment returned to memory port

Data Separators

Tail

Header LD 0x30 LD 0x32 LD 0x34 DEC SETZ ST 0x30 SWAP CPACC ADD CST 0x36 ST 0x34 ST 0x32 CALLZ 0x10

(a) Bootstrap packet injected at via (b) First packet fragment returned to memory port
executing bootstrap JMP
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Figure 10. Bootstrapping the fibonacci execution packet with a JMP 



achieve similar performance (depth-first execution only increases the number of nodes 

reachable on the execution network). The average time per loop iteration (0x10 to 0x36) 

is 22,300 cycles and it might be possible to reduce this through loop unrolling. However, 

only 2,000 of the 22,300 cycles are spent in performing the actual computation. More 

than 20,000 cycles are spent in accessing the memory system. Figure 11 illustrates the 

execution of the program. We take a snapshot of execution before the first load operation 

completes. While the absolute performance of this example does not surpass even current 

CMOS, it serves to demonstrate the operation of a single cell. The greatest advantage of 

this technology arises from the scale of the system.  

 
Figure 11.  The path of Fibonacci code in one direction through configured 
network with 1024 nodes and 3% defects.  Unused nodes in the execution network 
appear faded, defective nodes are omitted. 1: Bootstrap packet injected via, 2: 
JMP executes at port, 3: LD 0x30 executes at port, 4: LD0x32 executes at port, 5: 
LD 0x34 executes at port, 6: DEC at processing node, 7: CMPZ executes at 
processing nodes, 8: ST 0x30 executes at port, 9: SWAP executes at processing 
node, 10: ADD executes at processing node.  



5.4. String Match 

The opportunity for massively parallel computation is tremendous. String searching is a 

common operation in many applications (e.g., searching for particular DNA sequences 

within a genome). Our string match program loads a 16-bit key and compares it to all 

data elements within the cell, and a conditional store indicates if a match was found. This 

implementation requires 48 memory locations for instructions and 16 for data. Therefore, 

we can search a 32GB database by using all 109 cells. The execution time within one cell 

is 35 ns per comparison, for a total of 28.5x106 comparisons/sec. The potential for 

massive parallelism would be exposed by having each of the 109 cells perform a unique 

comparison, yielding an overall rate of 2.85x1016 comparisons/sec. 

5.5. Discussion 

The peak performance of NANA (assuming 1/2 the nodes compute) is significantly 

higher than today’s supercomputers. NANA can potentially perform 4.12x1021 bitops/sec 

while the IBM Blue Gene can achieve 4.6x1016 bitops/sec and the NEC Earth Simulator 

can achieve a peak of 5.2x1015 bitops/sec. However, it will be a challenge for NANA to 

realize this peak performance in practice. Developing these programs exposes two key 

limitations of our current architecture: 1) under-utilization of nodes and network 

connectivity, and 2) bottlenecked memory system. 

Under-utilization of Nodes. One of the key limiting factors to achieving good 

performance is the fact that nodes spend only a small fraction of their time doing useful 

work. For example, if we are executing 10 arithmetic instructions, the node that executes 

the first instruction is doing useful work only when a) it is receiving the first instruction 

and b) it is receiving its operands for execution. Since there are 10 instructions being 

executed, which will require 11 operands (assuming data is pre-loaded), the packet will 

contain 868 bits (including header, instructions, operands, field separators and tail). Out 

of these, only 220 bits (header, instruction to be executed, separators, two operands, the 

operand separators and tail) are relevant to the execution of the instruction. Thus, the 

node is doing “useful” work only when it is dealing with ~25% of the bits in the packet. 

No useful computation is performed by the node in the remaining time. 

The depth-first execution network increases the number of nodes usable during 

execution, but it does not reduce node idle time. The execution network can be thought of 

as a pipeline of nodes. The pipeline is most efficient only when it is full. Similarly, the 

execution network is fully utilized only when all nodes are actively executing 

instructions. This would require the creation of extremely long packets. However, the 

longer the packet, the longer it takes for a node to execute instructions because longer 



packets typically have longer instruction and data fields and a node needs to forward the 

entire packet before it can handle the next packet. This limits the peak performance of 

NANA. 

Memory System Bottleneck. The memory system in NANA has multiple bottlenecks. 

Because of the way it is designed, it is currently not possible to execute store instructions 

(direct, indirect or conditional) from a packet before any load instructions (direct or 

indirect). This limits the size and content of execution packets that can be created. In 

addition, all memory requests are serialized through the anchor node. This creates a 

substantial bottleneck at the anchor node. There is no easy way of alleviating this 

bottleneck, without significantly adding to the complexity of the system. Finally, our 

limited routing capability in the random network limits our ability to build a balanced 

memory network. This often results in unbalanced networks with long latencies. 

Despite its limitations, NANA demonstrates that it is possible to build a computing 

system despite the severe technological constraints. As a first step NANA does 

remarkably well. Future designs based on this technology can use the insights gained 

from this design. We believe that NANA is a necessary first step toward exploiting 

nanotechnology’s potential to overcome the “red brick wall.” 

6. RELATED WORK 

This paper covers a wide range of topics from novel bottom-up fabrication techniques 

and emerging devices through microarchitecture and instruction set design. There is 

significant literature on most of these important topics. However, to keep focus we 

discuss only the most closely related architecture work. 

The most related work is Dwyer’s proposal to use a DNA guided self-assembly 

technique to build a massively parallel computer [Dwye03, Dwye04d, Dwye04a]. The 

proposed machine has no communication between processing elements, thus targets 

problems that are “embarrassingly parallel.” In contrast, our work aims to build a more 

conventional processor. Goldstein’s work on nanofabrics leverages reconfigurable self-

assembled nanoelectronics to provide a defect tolerant architecture [Gold01]. Resonant 

tunneling diodes (two terminal devices) are configured into supernodes of appropriate 

functionality after a test phase maps out defective components. The nanofabric is 

reconfigured for each program that executes. DeHon presents an architecture that exploits 

three terminal devices (FETs) by self-assembling arrays of nanowires and FETs 

[DeHo03]. Sparing and remapping are used to provide defect tolerance. Other research 

investigates defect tolerant architectures [Han03,Han05,Heat98, Niko02, Snid04, 

Thak05], various array-based nanoarchitectures [Anco96, Beck02,Foun98] and 



alternative emerging nanoelectronic technologies [Gaya05, Niem01, Oski02, Tour00, 

Tsen01] and some of the challenges that will be faced in dealing with these emerging 

technologies and possible means of overcoming those challenges [Fort03, Niem04, 

Stan03].  

7. CONCLUSIONS 

This paper presents an architecture that addresses the challenges posed by DNA-based 

self-assembly of carbon nanotubes and other nanotechnologies with similar 

characteristics (possibly even scaled CMOS). To overcome (1) limited node size, (2) 

random interconnection of nodes, and (3) a high defect rate, we developed an active-

network architecture with an accumulator-based ISA. This architecture enables execution 

packets to search through a sea of heterogeneous nodes for the functionality they need, 

while avoiding defective nodes. We use an initial configuration phase to impose some 

limited structure on the computing substrate, particularly for routing and memory 

allocation. We simulate this architecture running simple programs to demonstrate its 

viability, and provide preliminary performance numbers. While this architecture is only a 

relatively unoptimized first step, it addresses some of the key challenges in this class of 

nanotechnology and it highlights the technology’s architectural implications. There is a 

significant amount of future work, including: fabrication, layout, ISA design, supporting 

speculation and parallelism, etc. 
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