
NANA: A Nano-scale Active Network Architecture
JAIDEV P. PATWARDHAN
Department Of Computer Science, Duke University.
CHRIS DWYER
Department of Electrical and Computer Engineering, Duke
University.
ALVIN R. LEBECK
Department Of Computer Science, Duke University,
DANIEL J. SORIN
Department of Electrical and Computer Engineering, Duke
University.
__

This paper explores the architectural challenges introduced by emerging bottom-up fabrication of
nanoelectronic circuits. The specific nanotechnology we explore proposes patterned DNA
nanostructures as a scaffold for the placement and interconnection of carbon nanotube or silicon
nanorod FETs to create a limited size circuit (node). Three characteristics of this technology that
significantly impact architecture are 1) limited node size, 2) random node interconnection, and 3)
high defect rates. We present and evaluate an accumulator-based active network architecture that is
compatible with any technology that presents these three challenges. This architecture represents an
initial, unoptimized solution for understanding the implications of DNA-guide self-assembly.

Categories and Subject Descriptors: B.2.1 [Hardware]: Arithmetic and Logic Structures – Design Styles; B.4.3
[Hardware]:Input/Output and Data Communications - Interconnection Subsystems; B.6.1[Hardware] Logic
Design – Design Styles; B.7.1[Hardware] : Integrated Circuits – Types and Design Styles; C.0[Computer
Systems Organization]: General; C.1.3[Computer Systems Organization]: Processor Architectures – Other
Architecture Styles
General Terms: Design, Performance
Additional Key Words and Phrases: accumulator ISA, active network, carbon nanotube, DNA, defect isolation,
defect tolerance, nanocomputing, nanoelectronics, reverse path forwarding, self-assembly.
__

1. INTRODUCTION

The semiconductor industry’s roadmap identifies a “red brick wall” beyond which it is

unknown how to extend the historical trend of ever-decreasing CMOS device size.

“Eventually, toward the end of the Roadmap or beyond, scaling of MOSFETs will

become ineffective and/or very costly, and advanced non-CMOS solutions will need to

be implemented.” [International Technology Roadmap for Semiconductors, 2002 Update,

Difficult Challenge #10]

This work is supported by an NSF ITR grant CCR-0326157, a grant from the Duke University Provost’s
Common Fund, an AFRL contract FA8750-05-2-0018, a Warren Faculty Scholarship (Sorin) and equipment
donations from IBM and Intel. We thank the members of the TROIKA project and Lavanya Ramakrishnan for
their help with this work.
Authors' addresses:Duke University, Durham,NC 27708,
{jaidev,alvy}@cs.duke.edu,{dwyer, sorin}@ee.duke.edu
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2006 ACM 1073-0516/01/0300-0034 $5.00

Technology change is fuel for architectural innovation. Evolutionary changes in

CMOS have inspired research on several important topics including wire dominated

designs, power dissipation, and fault tolerance. A revolutionary technology change, such

as replacing CMOS, is a potentially disruptive event in the design of computing systems.

Emerging technologies for further miniaturization have capabilities and limitations

that can significantly influence computer architecture and require re-examining or

rebuilding abstractions originally tailored for CMOS. This paper explores the

architectural challenges introduced by emerging bottom-up fabrication of nanoelectronic

circuits and develops an architecture that meets these challenges.

We focus on one specific nanotechnology in this paper: DNA-guided self-assembly

[Seem99] of carbon nanotube field effect transistors (CNFETs) [Bach01,Fuhr01,Huan01]

and wires. To place and interconnect these components, we propose using patterned DNA

nanostructures [Yan03b] as a scaffold to which we attach carbon nanotubes. The DNA

nanostructures create a limited size circuit (node) of CNFETs. DNA-guided self-

assembly can also provide a scaffold for metal that forms the interconnect between nodes,

but without the control available in the patterned nanostructures, thus producing a

random interconnect. There are three aspects of this technology that significantly impact

architecture: 1) limited node size, 2) random interconnection of nodes, and 3) high defect

rates. Our goal is to develop an appropriate architecture that can be implemented in any

technology with these characteristics. We also enumerate several important issues to

address during architectural development.

There are likely many possible approaches to developing a functioning system. Our

goal in this work is not to determine the best approach, rather it is to simply obtain one

approach. Therefore, in this paper, we adopt the philosophy of “make it work first,

optimize later.” We present one potential solution, an active network architecture with an

accumulator-based ISA. The limited node size prevents the design of a single node that

can perform all operations. Instead, we design different node types (e.g., add, memory,

shift) based on node size constraints. A configuration phase at system startup maps out

defective nodes and links, organizes a memory system, and sets up routing in the

network. To execute, an instruction searches for a node with the appropriate functionality

(e.g., add), performs its operation, and passes its result to the next dependent instruction.

In this active network execution model, the accumulator and all operands are stored

within a packet rather than at specific nodes, thus reducing per-node resource demands.

The active network execution model enables us to encode a series of dependent

instructions within a single packet.

This architecture matches our technology characteristics since it 1) allows for

differing node types with specialized functionality, 2) tolerates a random interconnection

of nodes, and 3) tolerates node and interconnect fabrication defects. While the

architecture has limitations, our design demonstrates that it is possible to build a general

purpose computing system using self-assembled nanoelectronic devices despite severe

technological constraints. As a first step, the nano-scale active network architecture

(NANA) does remarkably well and provides valuable lessons for future designs. We

believe that NANA is a necessary first step toward exploiting nanotechnology’s potential

to overcome the “red brick wall.” The contributions of this paper are:

• We present a list of challenges that are likely to be encountered by system architects

when building a system using self-assembled networks of simple computational

circuits.

• We adapt an existing algorithm to provide defect isolation for node defect rates up to

30%.

• We propose and evaluate a general purpose architecture built using self-assembled

networks of simple computational blocks, demonstrating that we can build a

computing system despite the hurdles presented by the underlying technology.

• We identify key aspects of the architecture that need to be improved further to

achieve better performance.

The rest of this paper is organized as follows. Section 2 describes DNA-guided self-

assembly of nanoelectronic components and Section 3 discusses the architectural

implications of this technology. We describe our proposed architecture in detail in

Section 4 and present an evaluation of the architecture using two illustrative examples in

Section 5. Section 6 discusses related work and Section 7 concludes.

2. EMERGING NANOTECHNOLOGIES

In this section, we describe the specific nanotechnologies used in this paper. We discuss

the electronic components (Section 2.1), DNA self-assembly of these components into

circuit nodes (Section 2.2), and the large-scale interconnection of these circuit nodes

(Section 2.3).

2.1. Carbon Nanotube Electronics

There are many choices for constructing nanoelectronic devices and nanowires [Bach01,

Cui01,Huan01, Mart99, Tans98, Tour00]. One such promising nanoelectronic device is a

carbon nanotube field effect transistor (CNFET) [Fuhr01, Jave04, Kim04, Tans98,

Wind02], in which application of a gate voltage modulates the conductivity of a

semiconducting nanotube. Recent advances enable the separation of metallic nanotubes

from semiconducting nanotubes, precisely controlling the length of individual nanotubes

[Stra03, Zhen03] and self-assembly of carbon nanotube based electronic devices

[Haza04]. Therefore, we could use both types of carbon nanotubes to construct logic

gates, memory (e.g., with cross-coupled NOR gates), and circuit interconnect. Other

potential materials (e.g., nanorods [Mart99], silicon nanowires [Cui01,Huan01]) could be

substituted for the carbon nanotubes without loss of generality in our architectural

analysis.

To explore the potential of CNFETs, we simulate several circuits using a customized

SPICE 3f5 kernel that models CNFET behavior in logic gates [Dwye04b]. We compare

CNFET-based logic gates with CMOS using ITRS target values and some data from

industry processes. Figure 1 shows a NAND gate delay for each approach. To obtain

these values we load each circuit output with four inverters (FO-4) and pass a square

input signal through a series of four inverters to each circuit input. We derive the CNFET

I/V behavior, parasitic capacitances, and inductances from geometric and literature values

[Burk03, McEu02]. Our results indicate that CNFET circuit performance is deep within

the “red brick wall” predicted by the ITRS. Industry data shows much better performance

for CMOS NAND gates, but the improvements across process generations is slowing

down. The CNFET results are also pessimistic, as the theoretical limit is significantly

higher [Dürk04]. The added benefit that CNFETs are amenable to self-assembly makes

this an attractive alternative, or supplement, to silicon device technology.

2.2. DNA Tiles and Nanostructures

The precise placement

and interconnection of

individual carbon

nanotubes remains an

area of diverse

research. These

integration challenges

and their impact on

higher-level designs

are shared by other

emerging technologies

(e.g., silicon

nanowires, quantum

dots, etc.). Since these devices are smaller than the resolution of top-down

 0

 5

 10

 15

 20

 25

 30

 20 30 40 50 60 70 80 90 100

20
18

20
16

20
14

20
12

20
10

20
08

20
07

20
06

20
05

20
04

20
03

N
A

N
D

 d
el

ay
 (

pi
co

se
co

nd
s)

Technology Node Size (nm)

Year

ITRS - Known solutions
ITRS - Red Brick Wall

CNFET
Industry

Figure 1. Nanoscale Device Performance

photolithographic methods, research has explored various techniques for bottom-up self-

assembly.

To overcome the challenge of nanoelectronic integration, we propose using DNA

self-assemblies to produce patterned nanostructures onto which we can programmably

attach carbon nanotubes. DNA’s well-known double-helix structure is formed through its

well-understood base-pairing rules—adenine (A) to thymine (T) and cytosine (C) to

guanine (G). By specifying a particular sequence of base pairs on a single strand of DNA,

we can exploit the base-pair rules as organizational instructions [Seem99].

These DNA tags can be used to create 2D patterned nanostructures [Winf98]. For this

paper we focus on a particular structure that creates a ‘waffle’-like lattice with repeating

cavities of ~16 nm x16 nm and 4 nm separation between cavities [Yan03b]. This type of

lattice has been experimentally demonstrated and can achieve sizes that extend to 3 µm

on each side (i.e., more than 150 cavities on a side).

Recently, we demonstrated the ability to place aperiodic patterns on a smaller lattice

[Park06], which could enable the placement of carbon nanotubes or nanowire transistors

[Skin05] at arbitrary locations in the lattice. Figure 2a shows an atomic force microscopy

(AFM) image of a 80 nm X 80 nm lattice with the letter ‘A’ patterned on it. We can place

and interconnect carbon nanotubes by forming tags (Figure 2b) at specific points on the

lattice [Dwye05, Yan03a] and using a recently demonstrated technique for attaching the

appropriate complementary DNA tags to carbon nanotubes [Dwye02]. Connections

between nanotubes are formed using a technique called electroless plating [Brau98].

�������
�������
�������

�������
�������
�������

Nanowire below lattice

Crossed Nanotube Transistor

DNA Scaffold

Nanowire above lattice

 ��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

C
DD

C

A

A
BB

C
DD

C

16nm 16nm4nm

A
BB

A

a) Patterned letter ‘A’ on

DNA-lattice

b) Proposed patterning method for DNA-lattice and

carbon-nanotube self-assembly

Figure 2. A DNA scaffolding for carbon nanotube circuits

The technologies described in this section provide a set of potential building blocks

for constructing nanoscale systems, and more details are provided elsewhere [Patw04].

The demonstrated operation of CNFETs and the ability to attach DNA tags to them make

this a promising nanoelectronic technology. The DNA self-assembly technique is

independent of the specific nanoelectronic device used, however the limited size of each

lattice (node) presents challenges for creating large sophisticated circuitry. We now

discuss how to interconnect these nodes into a computational substrate.

2.3. Large-scale Interconnection

Using inexpensive laboratory equipment we could potentially use self-assembly to

simultaneously build as many as 1012 identical, but small, nodes. This number of nodes, if

placed 0.25 µm apart, would cover a 325 cm X 325 cm area, or the equivalent area of

~150 wafers (300 mm diameter). Although the size of an individual node is well above

the minimum feature size of photolithography, the number of nodes fabricated through

self-assembly limits how heavily the overall process can rely on conventional patterning.

Self-assembling nodes onto a substrate at well-defined places is also difficult without

“naming” each placement site (pick and place methods will not scale to this number of

components). Even with DNA tags on the substrate, the nodes are not guaranteed to fall

into place precisely. Most conventional architectures require precise placement and

interconnection between circuits. Therefore, even if we could use a conventional

photolithographically patterned network to interconnect nodes, the result would be a

random interconnection due to

the random placement of nodes

on the substrate. This is the

sacrifice a self-assembly process

imposes: precision and control

exist only at small length scales

(~2 µm, for now).

We use individual DNA

strands that self-assemble

between node edges, providing a

scaffold for metal that forms an

electrical connection [Liu04,

Yan03b]. This larger scale process cannot deliver the precise control found in the earlier

process used to assemble the nodes, but it can fabricate single wire interconnections

between the edges of the nodes, as illustrated in Figure 3. In this paper, to simplify

Figure 3. Schematic rendering of a self-

assembled DNA interconnection network after
metal decomposition

presentation, we model system fabrication using a uniform grid and introduce defective

nodes and links. Furthermore, preliminary evaluations comparing the grid approach to a

physical model (based on a random walk) of DNA self-assembly of interconnections

reveals the two techniques produce similar overall network characteristics.

3. ARCHITECTURAL IMPLICATIONS

The DNA-guided self-assembly process described in Section 2 presents several

challenges that must be addressed when designing a system. The three primary aspects of

the fabrication process are small-scale control of placement and connectivity within a

single node (Section 3.1), large-scale randomness in node placement and interconnection

(Section 3.2), and high defect rate (Section 3.3). These three aspects significantly impact

architectural decisions (Section 3.4), particularly since conventional architectures assume

precise control at both the small and large-scale.

3.1. Small-scale Control

The ability of DNA-guided self-assembly to achieve only small-scale control impacts

architectural decisions in several ways. Three of the most significant are: limited space,

limited coordination, and limited communication.

Limited space. A 150x150 node can have a maximum of 22,500 CNFETs, however on-

node interconnect will reduce efficiency since a node only has two-levels of interconnect.

Furthermore, a portion of each node must be allocated as a “pad” for the DNA

interconnect to other nodes.

The limited node size presents a trade-off in node design. At one extreme, we could

design just a single node type that contains both computation and storage capabilities.

However, since storage and computation circuits must share the node, each may be

severely limited in capability. Alternatively, we could design a few specialized node

types, some devoted to computation and others to storage. Even when designing a

specialized node, the limited space impacts architectural decisions. For example, large

state machines are not an option within a node since there is insufficient space for state

storage. Similarly, the number of bits available in a storage node may be limited, thus

affecting an architecture’s word size.

Limited communication. Without large-scale control, there is limited communication

among nodes. Each node has four neighbors and there is no long haul communication.

Furthermore, the connections between nodes are limited to single wires. Although the

degree of each node or the number of connections between neighbors could be increased,

each connection occupies precious edge space. In contrast, conventional CMOS designs

exploit multiple metal layers for long-haul communication and large-scale control to

create multi-wire connections between components.

Limited coordination. Conventional CMOS designs rely on precise control during

fabrication to create sophisticated circuits (e.g., 64-bit adder with carry lookahead). For

our technology, if the most sophisticated node is a full-adder, then it is unlikely that 64

such nodes can be coordinated to implement a 64-bit adder. Coordination among nodes is

limited to immediate neighbors and it is difficult to a priori configure a group of nodes to

operate in a coordinated manner.

3.2. Large-Scale Randomness

Our proposed self-assembly process provides excellent control at the small-scale,

however it cannot achieve such control at large scales. The resulting randomness

introduces some additional issues that architectures must address.

Random node placement. The self-assembly process does not guarantee where any

particular node will lie in the final circuit. Each node simply attempts to connect to other

nearby nodes. The architecture and machine organization must accommodate this

arbitrary placement of functional blocks.

Random node orientation. Similar to the random node placement, the assembly process

we envision does not provide control over node orientation. Any system design must

tolerate arbitrary node orientations and cannot make a priori assumptions on orientation.

For example, it is incorrect to assume that the “east” side of one node will connect to the

“west” side of its adjacent node.

Random node connectivity. Connections between nodes are not guaranteed to succeed

during self-assembly. Therefore, it is possible for any node to have between zero and four

functioning connections to its neighbors. The architecture must not make any a priori

assumptions about available connectivity. When combined with random orientation, it is

possible for nodes to connect in a triangular shape rather than the 2x2 grid one would

assume with nodes that have degree four.

3.3. High Defect Rates

An inherent aspect of any self-assembly process is defects. Fabrication defects can

influence node functionality and connectivity. Some interconnect defects cause the above

problems with connectivity. While some aspects of fabrication can reduce the likelihood

of defects (e.g., purification steps or overdesign of DNA tags), there will always be a

significant number of defects and any architecture using these technologies must tolerate

them.

3.4. Architectural Challenges

The above discussion exposes several aspects of this fabrication technique for nano-scale

circuits that must be addressed by any architecture and its corresponding

implementations. In this subsection, we enumerate several important challenges to

developing an appropriate architecture for this emerging technology. This list is not

exhaustive, but rather highlights some important challenges.

Designing Nodes. The architect must decide what functionality to place in each node.

Should there be homogeneous nodes or heterogeneous nodes? If heterogeneous, then

what types of nodes? How does node design affect connectivity/communication with

other nodes, and what primitives should be provided?

Utilizing Multiple Nodes. Since individual nodes do not contain sufficient computation

and storage to perform much useful work in isolation, an architect must determine how to

exploit multiple nodes. This must be achieved given the above limitations on

coordination, communication, placement, orientation, and connectivity.

Routing with Limited Connectivity. Traditional routing techniques may not apply since

there is limited space for the complexity of dynamic routing and there are insufficient

guarantees on node placement and connectivity to use conventional static routing.

Developing an Execution Model. The execution model embodies the software-visible

aspects of the architecture and can be influenced by implementation constraints or

instruction set requirements. For the envisioned fabrication technique, the execution

model must overcome the severe implementation constraints outlined above while

enabling a reasonable instruction set.

Developing an Instruction Set. Programmable systems require an interface that enables

software to specify operations. Typically this is achieved by the instruction set

architecture (ISA). The ISA may be influenced by the underlying capabilities of the

technology. Given our fabrication technique, the architect must design an appropriate

ISA that supports the above execution model.

Providing a Memory System. Storage is a crucial component of most computing

systems regardless of the execution model. The ability to store values for future use and

to name and find particular values is a necessary aspect of most computing paradigms.

Interfacing to the Micro-scale. An important aspect of any nano-scale system is the

interconnection to larger-scale components (e.g., micro-scale). This connection is

necessary for at least providing an I/O interface for communication with the outside

world. It may be possible for the architecture to exploit this interface in other ways.

The challenge is to address each of these issues such that we arrive at a functioning

system. There are likely many possible approaches to developing a functioning system.

Our goal in this work is not to determine the best approach, rather it is to simply obtain

one approach. With any emerging technology, we must limit the scope of studies to

ensure forward progress. The remainder of this paper presents one potential architecture.

4. AN ARCHITECTURE FOR SELF-ASSEMBLED NANO-ELECTRONICS

As an initial approach to address the issues raised in Section 3, we propose NANA, an

active network architecture that is compatible with our fabrication technology. The

architecture is like an active network [Tenn96] in that execution packets that contain

instructions and operands search through a loosely structured sea of processing and

memory nodes for the functionality that they need at each step of execution. This

architecture matches our technology characteristics since it 1) allows for differing node

types with specialized functionality, 2) tolerates a random interconnection of nodes, and

3) tolerates node and interconnect fabrication defects.

4.1. System Model

The system model is a random interconnection of various node types, in which all nodes

contain circuitry for communication and each node has some specialized circuitry (e.g.,

processing, memory, etc.). Groups of nodes are organized into cells. A node

communicates with a neighboring node via a single link that is asynchronous and

bidirectional (time-multiplexed on a single physical wire). Each cell has a via that is its

connection to the micro-scale, and one of the nodes connected to the via acts as the

anchor node for the cell. Inter-cell communication occurs through a micro-scale

interconnection network. The memory nodes in each cell comprise a portion of the global

memory space. Some fraction of nodes are configured as memory ports to provide an

interface between execution packets and memory storage. Figure 4 illustrates our system

a) 2D mesh of cells b) Nodes within a cell
Figure 4. a) System Model. b) Processing nodes (P), memory nodes (M), memory
port nodes(M*), anchor node (A), and via (V). This schematic is not to scale (w.r.t.

nodes per cell)

model. To impose structure on the interconnection network and the memory system, there

is a configuration phase [Patw05] that occurs before any execution. Reconfigurable

architectures [Culb96, DeHo02, Gold01, Heat98] have demonstrated that this approach is

important to achieve high performance in the context of highly focused (i.e., aggressive)

or highly defective technologies, including nanotechnology. We describe the purpose,

beyond defect tolerance, and operation of the configuration in detail later in this section.

While node functionality is heterogeneous, all nodes have some common

responsibilities. Each node generates its own local clock (we choose a clock frequency of

10 GHz, which is pessimistic given the data in Figure 1) and communicates

asynchronously with its neighboring nodes using signaling techniques similar to push-

style pipeline systems. High level communication between two devices over a single wire

can be managed using simple two- and four-phase single wire techniques [vB96]. Each

node must also contain routing functionality for determining the outgoing link for an

incoming packet (or the result of an operation). This circuitry maintains node state (e.g.,

currently processing a packet) and handles link contention.

4.2. Execution Model

The execution model relies on an accumulator-based ISA. Conceptually, the accumulator

is initialized and then a sequence of operations are performed on the corresponding series

of operands. The accumulator-based ISA reduces the need for widespread a priori

coordination and communication among many components (e.g., associative lookup in

issue queues), since the only data dependence involves the accumulator and instructions

are processed in order [Kim02]. We support accumulator-based execution by forming an

execution packet that contains the operations, the accumulator, and all operands in

appropriate order. Instructions are executed in the order specified in the packet, as they

are routed through the network and find the requisite functional units (or memory ports).

Logically, each functional unit performs its specified operation, removes the operand and

forwards the new accumulator and the remaining operands to the subsequent functional

units. Each subsequent functional unit performs a similar sequence until all operations in

the packet are completed. Memory operations generate memory packets that are handled

by the memory ports, as discussed in Section 4.5. Packet sequencing is achieved using a

process called chaining, discussed in Section 4.6.

Our system and execution model enable significant parallelism by instantiating

multiple execution packets within a cell and in multiple cells. While this parallelism is an

important aspect of our architecture that fully exploits the capabilities of the underlying

technology, in this paper we focus primarily on the operation of a single cell and

sequentially instantiate execution packets.

To augment the defect tolerance of configuration and to protect against transient

faults we could add a signature vector to each packet and verify the integrity of a

computation performed by the packet. The signature vector is operated on like the

operands field of a regular execution packet with the exception that the initial signature is

not consumed by the operation. The order of instructions will be reflected by a

characteristic signature vector and can be used to determine if the nodes performing those

operations were functioning properly during the signature calculation. This approach can

be further augmented with redundant execution packets and a voting mechanism.

4.3. Instruction Set and Packet Formats

The format of an execution packet is: header, instructions, operands, tail. Specific bit

patterns delineate field boundaries. The header is a fixed-length field that includes packet

type and other metadata. The instructions field is a variable length list of opcodes in

program order. The operands field is a variable length list of operand values. To

accommodate the limited node size, we use a bit-serial implementation. The active

network architecture and accumulator ISA are independent of this choice and provide an

architecture that can scale with improvements in node capabilities (i.e., multi-bit

operations). Figure 5 shows the execution packet format for our bit-serial

implementation. The operands field is divided into bit-slices from least significant bit to

most significant bit (from packet head to tail). Each bit slice starts with a bit from the

accumulator and is followed by each bit (for the particular bit- slice) of the operands.

Operands

n−1 n−1 n−1 n−10 0 0 0 111 1

Header Tail

Opcode 1 Opcode 2 Opcode N

Instructions

A X Y Z ...A X Y Z ... A X Y Z ...

Figure 5. Packet format.

The instructions that this architecture supports must be bit-serial in nature and require

little communication between bit slices. Many instructions are simple to implement with

limited circuitry (e.g., ADD, SUB, OR, AND, XOR, NOR, NAND, compare, move) and

require only small extensions to a bit-serial full adder circuit. Each operation requires

only a small amount of information (e.g., carry-out bit) to be communicated to

subsequent bit slices. This simplifies the implementation details of the circuits so that

they will fit within the node size limits of the technology. Although each instruction is

bit-serial, the bit interleaving enables parallel execution of consecutive operations in a

pipelined manner. Instructions supported by NANA can be divided into nine categories

and are listed in Table 1.

The serial nature of this architecture and the limited node complexity of the

technology makes certain operations difficult. Table 2 lists several instructions specially

designed to help overcome these difficulties. For example, right shifts (moving bits from

the tail toward the head) are difficult because they require bits to be forwarded ahead of

other bits unless entire operands are stored at the functional node. Since we assume that

both operand storage and ALU-type functionality in a single node requires too much area

for our limited node size, we exploit the stack-like nature of the operand stream to

support right shifts. When a right shift is executed, it also places the result at the end of

the operand stream. Thus, to execute a right shift, we buffer the field separator between

bit slices and send out the next observed data bit before re-inserting the field separator

into the packet bit stream.

Instruction Type Instructions
Arithmetic ADD, INC, SUB, DEC, SHL, SHR

Comparison COMPEQ, COMPGT, COMPLT, SETEQ, SETGT, SETLT,
SETZ

Operand Stream
Control

LDCONST0, LDCONST1, CPACC, MOV, DELOP,
OPFLUSH, SWAP

Logical AND, NAND, NOR, NOT, OR, XOR, XNOR, NOP
Load LD [Mem], LDI [Mem]
Store ST [Mem], STI [Mem]

Conditional Store CST [Mem], CST_RST [Mem], CRST [Mem], CSTI [Mem],
CSTI_RST [Mem], CRSTI [Mem]

Unconditional Control
Transfer JMP [Mem], CALL [Mem],JMPI [Mem],CALLI [Mem]

Conditional Control
Transfer

CALLNZ [Mem], CALLZ [Mem], CALLNZI [Mem],
CALLZI [Mem]

Table 1. NANA Instruction Set

The bit-slice packet encoding also complicates memory operations. For example, a

load requires all of its address bits to generate a request. If the address is in the operand

stream, then it is impossible for the load to interleave the resulting data in the same

operand stream since all the low order bits are ahead in the packet flow before the entire

address is obtained. Similar difficulties exist for stores. Therefore a packet cannot both

calculate an address and use it in the same packet. To address these limitations, we

provide three specific types of memory addressing: immediate, constant address and

indirect address. Constant addressing requires the address to appear in the instruction

field of the packet. Indirect addressing supports indirection through a memory location

that is specified as a constant in the instruction field of the packet. We also provide

special instructions (JMP & CALL) for instruction sequencing (discussed in Section

4.6). Conditional execution is supported through status bits (e.g., condition codes) in the

packet tail. Currently we support conditional store and CALL instructions that must wait

to execute until the packet tail arrives so that they can examine the appropriate status bit.

Instruction Operation
MOV Move accumulator to end of operand stream
SWAP Swap first and second operand

SHR Shift accumulator right by 1 bit, move
accumulator to end of operand stream

DELOP/OPFLUSH Remove one/all operands from operand stream

CPACC Create copy of accumulator at end of operand
stream

SET (EQ/GT/LT/Z) Set flag bit in tail if condition satisfied, consume
accumulator

COMP (EQ/GT/LT) Set flag bit in tail if condition satisfied, consume
first two operands

LDI [Mem]/ STI [Mem] Load/store indirect through constant address
[Mem]

CST [Mem]/CSTI [Mem] Conditional store direct (CST) or indirect (CSTI)
to [Mem] (status bit in tail must be set)

CST_RST [Mem] Conditional store to [Mem], reset status bit after
performing store

JMP [Mem]/JMPI [Mem] Fetch instructions into existing packet from direct
(JMP) or indirect (JMPI) address [Mem]

CALL [Mem]/CALLI [Mem] Create new packet using instructions from direct
(CALL) or indirect (CALLI) address [Mem]

CALLNZ [Mem]/CALLNZI [Mem] Fetch instructions into new packet if status bit is
set (not zero) (direct/indirect)

CALLZ [Mem]/CALLZI [Mem] Fetch instructions into new packet if status bit is
not set (zero) (direct/indirect)

Table 2. Definitions of a selected subset of instructions

Programming NANA is similar to programming other accumulator based ISAs

[CK98, Kim02, Kim03, Lavi78], however, care must be taken to account for system

capabilities and constraints. For example, the ‘shift right’ instruction (SHR) is

constrained by node resources to shift the accumulator and move it to the end of the

operand stream, while the ‘shift left’ instruction (SHL) operates as expected (i.e., it shifts

the accumulator left by one bit). Another constraint arises from the structure of the

memory system - all loads must precede stores in a packet. Consider a simple code

fragment (x=x+ *(y+a)) that computes a memory address (y+a) and then adds the

contents of that location to another variable stored in memory. Due to the load-store

ordering constraint, instructions must be divided into two packets. Table 3 shows the two

packets needed to implement the code segment, and how their fragments are arranged in

memory. The first packet, starting at address 0x10, performs an address calculation (y+a)

and stores the result in a third location, z. The last instruction, at address 0x20, chains this

packet to the next packet, which starts at address 0x40. The second packet performs the

addition of x with the value stored at the memory location pointed to by z, and stores the

result into x (i.e., x=x+*z). This packet executes by first loading the value of x, then

performing an indirect load on z (instruction at 0x44). Next, it executes the add and stores

the result into x. This example illustrates some constraints that must be faced in

programming NANA. We expect that, as the underlying technology matures, a richer ISA

with more complex instructions will become possible, including efficient variable bit

shifts, bit-serial multiplication and division. Until then, we compose these more

sophisticated operations in software using simpler primitives.

4.4. Interconnection Network: Finding Resources for Execution

The active network architecture must enable packets to find what they need without

deadlocking or livelocking, despite high defect rates and traveling through a randomly

interconnected sea of nodes. To avoid request/response deadlock (i.e., fetch deadlock),

the minimum requirement is three logical networks: one for execution packets, one for

memory request packets and one for memory response packets. Each of these logical

networks is irregular and must provide deadlock- and livelock-free routing. While we

could implement these three networks using three virtual channels [Dall92] per

Address Instruction NextPC Address Instruction NextPC
0x10 LD y 0x14 0x40 LD x 0x44
0x14 LD a 0x18 0x44 LDI z 0x48
0x18 ADD 0x1A 0x48 ADD 0x4A
0x1A ST z 0x1E 0x4A ST x 0x0
0x1E CALL(0x40) 0x0

Table 3. Memory layout for two packets that compute x=x+*(y+a)

unidirectional link, this unnecessarily increases the amount of buffering required on a

single node. We reduce the requirement to two virtual channels per unidirectional link by

creating distinct physical networks for execution and memory; we explain how this is

implemented in Section 4.5. We also use wormhole routing since it requires the least

buffering on each node (1 bit per channel).

4.4.1. Imposing Structure with Gradients

Virtual networks avoid fetch deadlock, yet each network must still provide deadlock- and

livelock-free routing. Given our irregular networks, we create a spanning tree using the

reverse path forwarding algorithm (RPF) [Dala78, Patw05] and then employ a variant of

up*/down* routing [Schr91], a degenerate case of turn-model routing [Glas92], and back

pressure flow control. The challenge is implementing these techniques with limited node

functionality.

To meet this challenge, we equip each node with two forms of communication: 1)

broadcast and 2) routing along gradients [John96, Inta00]. Packet headers include

information on the type of communication to use. Broadcast requires minimal state per

node and is used during configuration only. Gradients reduce per-node resources while

still enabling deadlock- and livelock-free routing. We use the RPF algorithm to create a

spanning tree with a specific via as the root and establish a gradient with a specialized

packet. Each node marks the link on which the gradient packet was received (i.e., points

to its parent in the spanning tree) and broadcasts the packet to its other neighbors. A node

will not broadcast gradient packets after having seen the first packet. This process can be

generalized to any number of gradients if each node records an identifier for each

gradient it detects. The broadcast algorithm terminates when all reachable nodes have

received the gradient. There is no external action required to terminate the algorithm, and

each node automatically stops forwarding broadcast packets when it has been configured.

We use five gradients: one for each planar direction (north, south, east, and west) and

an additional gradient that establishes cell boundaries and the direction toward the via in

each cell (called the cell gradient). The planar gradients are established by starting the

broadcast at the north, south, east, and west edges (or corners) of the system,

respectively. Figure 6 illustrates a gradient established from the upper left corner (north)

in a 32x32 grid with a 30% defect rate. Defective nodes, not drawn in this figure, can

cause islands of disconnected nodes such as the region near the via.

Configuring Cells. The process is initiated at each via in parallel by broadcasting a cell

ownership packet that includes a cell identifier. The cell gradient broadcast stops when its

wave front collides with the wave front from an adjacent via. Nodes detecting a conflict

in cell identifiers stop the broadcast, creating a boundary between cells, and record that

they are boundary nodes.

Tolerating Defects. Creating

spanning trees using a broadcast

flood maps out defective nodes

and links, since no other node will

have a gradient pointer to the

defective node. If routing is

restricted to follow a gradient,

then packets will never be sent to a

node that did not receive a

gradient packet. Figure 7 shows

Figure 6. A 32 x 32 grid of memory and processing nodes with one established

gradient (North)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

%
 o

f N
od

es

% Defective Nodes

Ideal
100x100

80x80
50x50
30x30

Figure 7. Percentage of nodes reachable by
gradient broadcast for varying defect rates

the percentage of nodes that can be reached by a broadcast for increasing node defect

rates. Each point on a curve is the average of ten simulation runs with different

distributions of defects in the network. The different curves correspond to different

network sizes. For defect rates up to 20%, the broadcast reaches most of the functional

nodes. A majority of functional nodes is still reachable for defect rates up to 30%, beyond

which we see a sharp drop in the number of nodes receiving the broadcast because

increasingly large regions are isolated from vias. Our analysis also shows that it is better

to broadcast the planar gradients from an edge than from a corner of a rectangular or

square network of nodes. In general, a via with more nodes surrounding it has a better

chance of reaching a larger set of nodes.

Our defect model assumes that the routing circuitry for a node is either fully

functional or not operational at all1. We can tolerate shorts in the node interconnect, and

we call such defects broadcast defects because they represent the unintentional broadcast

(to more than one link) of packet bits. Such defects are difficult to avoid during

fabrication and require an arbitration scheme, similar to fixed back-off media access

schemes in networks. The asynchronous link controllers in each node can be designed to

assert a link-good signal after a random interval of time after power up. The randomness

can be introduced during the self-assembling process [Dwye03]. Every node monitors its

links for the link-good signal and marks any link that has received more than one signal

as defective. When the node’s internal random interval has elapsed, if the link is not

already marked defective it asserts its own link-good signal on all links. This arbitration

scheme identifies both shorts and opens on links between nodes. The nodes connected to

the via essentially share a single link (the via) that appears as a broadcast defect. The

result of this arbitration scheme is for a single node to remain actively connected to the

via, thus acting as the cell anchor.

Due to defects, some vias may not have a path to any of the four planar gradient

destinations. This can be detected by monitoring the via at the micro-scale during the

broadcast of each of the planar gradients. If the via fails to receive any of the gradient

broadcast packets, it should be marked as defective and not participate in cell

configuration.

4.4.2. Execution Packet Routing

1 The general Byzantine defect model, in which defective nodes can produce arbitrary behavior, has been considered in the
internet literature, but tolerating such defects requires a great deal of complexity at each node [Cast99].

The spanning tree structure imposed by gradients provides the framework for packet

routing. Execution packets and memory packets never share physical links and thus

cannot block each other. Up*/down* routing on the spanning trees prevents routing

deadlock and livelock. However, execution packets must be able to find the necessary

resources for execution, and memory packets must successfully find the appropriate

memory location, which responds if necessary. We discuss memory packet routing in

Section 4.5.

To avoid deadlocking execution packets, we simply follow a single gradient (up* on one

spanning tree) on one virtual channel until we reach a cell boundary, then reflect the

packet back into the cell on the opposite planar gradient but on the other virtual channel.

Reflection only occurs if there are remaining instructions in the packet, otherwise a

special packet is sent to the anchor node to indicate completion. We note that the header

can run ahead of the operand stream allocating nodes for instructions (due to execution

delay in a node). This approach can indefinitely bounce a packet between cell edges. The

only constraint is that packet length be less than the total number of nodes in the round

trip traversal. Since execution packets only traverse in the up* direction of the spanning

tree, each node must only store a single pointer per spanning tree (the gradient direction).

An execution packet’s ability to find the appropriate resources depends on several

fabrication variables, including defect rates and the distribution of node types (evaluating

this space is future work). In the next subsection, we describe how we can exploit the

packet routing infrastructure to configure a fully addressable memory system in each cell.

4.5. Memory

Each cell represents a local namespace for memory and includes both data and

instructions. The memory system must be able to (a) allocate (number or name) its

locations, (b) provide an interface to execution packets, and (c) route memory packets

(both requests to specified locations and responses back to requestors).

4.5.1. Memory Allocation

The memory network is a spanning tree rooted at the cell anchor. To configure memory,

allocation packets are injected from the via through the anchor node, initially routed on

virtual channel zero using any planar gradient. When an unallocated memory node

receives an allocation packet, it records the address, marks itself as allocated, and sinks

the packet. The second allocation packet received by this node is forwarded along the

specified gradient, forming a branch in the network. For the third allocation packet, the

node modifies the header to route the packet on virtual channel one along a planar

gradient that creates a second branch in the network. Three fourths of the subsequent

allocation packets arriving on virtual channel zero are forwarded along the first branch

while the remaining packets use the other branch and switch to virtual channel one.

Packets on virtual channel one are never modified. Cycles in the memory network are

prevented by having an allocated node only accept configuration packets on the same

physical link as its original allocation packets.

 Memory ports are allocated after memory nodes and must have three good links

(excluding the link used by the incoming packet) with three distinct planar gradients.

Ports never change an allocation packet gradient, thus keeping the remaining two links

free for the execution network. Memory ports are unnamed except for one port where we

initiate execution. Non-memory nodes between memory nodes route allocation packets

according to the specified gradient and reserve the corresponding links only for memory

Figure 8. Memory Network. 32x32 grid with a fully configured memory network,

showing one gradient (west)

operations. A second planar gradient configuration creates new spanning trees that do not

include any of the memory network links, thus creating two separate networks. Figure 8

illustrates the allocation of 64 memory locations and 64 ports on a 32 x 32 grid with a 3%

defect rate. For illustration only, we include only the West planar gradient on the

execution network and use a low defect rate on a small grid. Clearly, in this memory

system the anchor node could be a bottleneck.

4.5.2. Interfacing Execution and Memory

The interface between the execution network and the memory network is controlled by

memory ports that assume responsibility for handling all memory operations, including

the JMP/CALL instructions for packet instantiation (see Section 4.6). When an execution

packet needs to perform a constant or indirect memory operation, it searches for a

memory port. A memory port servicing an execution packet stalls the execution packet,

but at different points for loads and stores. Since load addresses are contained in the

instruction field, the load can immediately issue and only stall the packet when the first

bit of the operand stream arrives. Thus, the header continues searching for resources for

subsequent instructions. When the memory port that initiated the load receives the

response, it interleaves the memory contents into the execution packet’s operand stream,

enabling the operand stream to continue forward. A store must see the entire operand

stream to extract the data, and after the node issues the store, it stalls the packet until the

store is acknowledged. This acknowledgment ensures inter-packet memory

disambiguation. Memory ports also support indirect memory operations which require

back-to-back memory operations: one to load the address and the other to access the

contents at that address. We implement this by first issuing a constant load to obtain the

address, then using the result to generate another address for the load or store.

4.5.3. Routing Memory Packets

Memory packets are routed on either a request or response virtual network (two virtual

channels per unidirectional link) that each obey up*/down* routing. Routing in the up

direction follows the cell gradient up the spanning tree to the anchor node where the

packet is broadcast in the down direction. Broadcasting is necessary since the destination

memory node or port could be anywhere in the memory network. Loads require two full

traversals of the memory network. However, since the anchor node is a serialization point

for memory operations, it can acknowledge a store by broadcasting down the response

network. Memory operations for addresses outside the originating cell are passed by the

anchor onto the microscale network.

4.6. Packet Instantiation and Chaining

Entire execution packets (from header through tail) can be stored in memory by

fragmenting them across memory nodes. Each fragment contains a portion of the

execution packet and the memory address of the next sequential fragment (zero indicates

termination). The fragments are written into memory using the micro-scale interface to

inject store requests into the memory network. Packets are reassembled and instantiated

on the execution network at a memory port using special sequencing instructions. Initial

execution starts by using the micro-scale interface to inject one of these instructions on

the memory response network for the named memory port.

Chaining is the process of sequencing instructions or packets under software control

by including a special instruction as the last operation. We implement two forms of the

sequencing instruction: 1) CALL creates an entirely new packet, but stalls until all

previous instructions are complete (i.e., it sees the packet tail), and 2) JMP injects new

operations into the existing packet by stalling the operand stream, thus enabling

accumulator forwarding. Conditional CALL is easily supported since the instruction

waits for the packet tail. Execution of one packet can overlap with its dependent packet’s

search for functional and memory nodes. We leave full exploration of the instruction set

and various forms of parallelism as future work.

4.7. Improving Node Utilization

While the four planar gradients allow us to route execution packets in the cell, we find

that only a small fraction of all execution resources in a cell are used. This is because the

route taken by the execution packet depends on its insertion point in the cell, and the

gradient that is being used to route. The execution network within the cell does not have a

well defined structure if we use planar gradients for routing. To improve the number of

nodes reachable by execution packets, we need to modify the structure of the execution

network within a cell.

We add a second via and anchor node (“execution anchor”) to the cell. This via is

used only by the execution network. Once the memory system has been created, we

broadcast an “execution” gradient in the cell. This gradient reaches nodes that have not

been included in the memory network and any ports on the memory network. This allows

us to create an execution network with better structure by performing a depth-first

traversal on the spanning tree created during the broadcast of the execution gradient. All

execution packets follow this depth-first order ensuring high execution node utilization.

The memory and execution networks now include most of the nodes in the cell,

potentially allowing the use of about 97% of the cell (some nodes can become isolated

during the creation of the memory network). However, as we discuss in Section 5.5, there

are other aspects of NANA that limit node utilization.

5. PRELIMINARY EVALUATION

This section presents a preliminary evaluation of NANA. Our goal is to demonstrate the

viability of the approach and to provide more details on execution. CNFET device

characteristics suggest that this technology may have significant advantages over silicon

in terms of power, delay, and cost. We are collaborating with physical scientists to

fabricate and characterize CNFET electronics, which will enable quantitative evaluation.

We have developed a tool chain to support automated circuit design [Dwye04b,

Dwye04c] and architectural evaluation. We first present an initial node floorplan,

describe our simulation framework and then demonstrate system operation and provide

preliminary performance results using two simple programs: 1) Fibonacci is strictly an

illustrative example, and 2) string matching reveals the potential to exploit massively

parallel computation with nanoelectronics. We conclude the section with an analysis of

the strengths and weaknesses of the proposed design.

5.1. Node Floorplan

 Figure 9 shows an initial

floorplan for a 3 µm X 3 µm

node that includes both an ALU

and 16 bits of data storage with

8-bit addresses. The four semi-

circles around the node

represent contact points for

inter-node links. The four

transceivers control data

transfer between the node and

its neighbors. Configuration and

gradient state is stored in the

block denoted ‘Gradients’,

while control logic is distributed in the four blocks marked ‘Control’ one of which is also

responsible for decoding instructions (marked ‘Control/Decoder’). The small unlabeled

blocks next to transceivers are the interface between the transceiver and the control/data

logic of the node. The largest area is consumed by the various state machines sized

according to the requirements derived from our simulator. Our current implementation

assumes specialized nodes, enabling more area for control and buffering.

Figure 9. Node floorplan

5.2. Simulation Framework

We evaluate NANA using a custom event driven simulator written in C++ that simulates

the system in detail. The simulator models activity within each node down to bit

exchanges between components. The simulator models all node types and the system at

all stages, including gradient broadcast, memory configuration, execution configuration

and run-time. It allows the user to vary a number of system parameters including the size

of the network, node type distribution, event latencies, defect rate, and number of cells

being simulated. Each cell holds a different part of the global address space and can

execute different programs that are provided as input to the simulator. All events in the

simulator are assumed to be a multiple of the clock cycle time (0.1 ns). The simulator

accepts user-defined network topologies, or it can generate regular grid based topologies.

For simplicity, we use a grid-based topology with a single 1024 node cell and a 3% node

defect rate in our evaluation. As long as the defect rate is low (about 15% or lower), the

network topology has little effect on performance.

5.3. Fibonacci

In this section we consider the simple code that computes the Nth Fibonacci number.

Table 4 shows the packet needed to implement Fibonacci for N >= 1 (N is stored at

address 0x30), and how the fragments are arranged in memory. For simplicity, each

instruction is a separate fragment. The first packet, starting at address 0x10, loads the

value N (counter), which specifies which Fibonacci number to compute, and the

constants 1 and 0 (pre-loaded into 0x32 and 0x34 to begin with). The fourth instruction

decrements the counter and sets the condition bit in the tail if the counter is zero. The

counter is then stored back at address 0x30. The seventh instruction swaps the first two

operands in the operand stream. The eighth instruction creates a copy of the accumulator

at the end of the operand stream. The ninth instruction (ADD) computes the next

Fibonacci number. If the condition flag in the tail is set, this new computed value is

stored at address 0x36. The two remaining operands are then stored at locations 0x34 and

0x32. Finally, if the condition flag is not set, we loop back to the beginning using a

Address Op Next Address Op Next
0x10 LD (0x30) 0x14 0x26 CPACC 0x28
0x14 LD (0x32) 0x18 0x28 ADD 0x2A
0x18 LD (0x34) 0x1A 0x2A CST (0x36) 0x2E
0x1A DEC 0x1C 0x2E ST (0x34) 0x32
0x1C CMPZ 0x20 0x32 ST (0x32) 0x36
0x20 ST (0x30) 0x24 0x36 CALLZ (0x10) 0x0
0x24 SWAP 0x26

Table 4. Packet Layout

CALLZ instruction, creating a new packet. If the condition flag is set, the instruction is

not executed, terminating the program. Figure 10 illustrates the creation of this packet

with a bootstrapping JMP. In Figure 10a, we show the bootstrapping packet inserted at

the via in the execution network. This packet is routed along the execution network until

it finds a memory port. The JMP instruction in the packet executes at the port and starts

fetching data from location 0x10 (where the Fibonacci code is stored). The data returned

from location 0x10 (Figure 10b) is divided into two parts: 1) data for packet and 2) next

address. The data for the packet (in this case, a LD opcode) is inserted into the packet and

sent out on the execution network. The next address is used to fetch the next fragment of

code (in this case, from address 0x12). The data returned from location 0x12 (Figure 10c)

provides the address for the LD instruction and the address of the next fragment of code.

This process is repeated until we get a data fragment back with 0x00 as the next address

(Figure 10d). This indicates that we have finished executing the JMP instruction. The

final packet before execution begins is shown in Figure 10e. It is important to note that

execution can begin while the JMP instruction is still executing.

To demonstrate our system operation, we simulate its behavior at the bit serial link

level executing the above packets. We model a single 32x32 cell with 25% ALU nodes

and four corner vias for planar gradients. We assume a random distribution of defective

nodes, with 3% of all nodes being defective. The memory system in the cell includes 64

16-bit memory nodes and 80 ports. A system using a depth-first execution network would

Header TailData Separators0x10JMP Header TailData Separators

0x12LD

address
Next

0x10

Header TailData Separators

0x14

LD

address
Next

0x300x12

(c) Second packet fragment (from 0x12)

0x000x10
Next
address (Stop
fetching)

Header LD0x30 TailData SeparatorsCALLZ

(d) Last packet fragment returned to memory port

Data Separators

Tail

Header LD 0x30 LD 0x32 LD 0x34 DEC SETZ ST 0x30 SWAP CPACC ADD CST 0x36 ST 0x34 ST 0x32 CALLZ 0x10

(a) Bootstrap packet injected at via (b) First packet fragment returned to memory port
executing bootstrap JMP

(e) Fully assembled packet with empty operand stream

Figure 10. Bootstrapping the fibonacci execution packet with a JMP

achieve similar performance (depth-first execution only increases the number of nodes

reachable on the execution network). The average time per loop iteration (0x10 to 0x36)

is 22,300 cycles and it might be possible to reduce this through loop unrolling. However,

only 2,000 of the 22,300 cycles are spent in performing the actual computation. More

than 20,000 cycles are spent in accessing the memory system. Figure 11 illustrates the

execution of the program. We take a snapshot of execution before the first load operation

completes. While the absolute performance of this example does not surpass even current

CMOS, it serves to demonstrate the operation of a single cell. The greatest advantage of

this technology arises from the scale of the system.

Figure 11. The path of Fibonacci code in one direction through configured
network with 1024 nodes and 3% defects. Unused nodes in the execution network
appear faded, defective nodes are omitted. 1: Bootstrap packet injected via, 2:
JMP executes at port, 3: LD 0x30 executes at port, 4: LD0x32 executes at port, 5:
LD 0x34 executes at port, 6: DEC at processing node, 7: CMPZ executes at
processing nodes, 8: ST 0x30 executes at port, 9: SWAP executes at processing
node, 10: ADD executes at processing node.

5.4. String Match

The opportunity for massively parallel computation is tremendous. String searching is a

common operation in many applications (e.g., searching for particular DNA sequences

within a genome). Our string match program loads a 16-bit key and compares it to all

data elements within the cell, and a conditional store indicates if a match was found. This

implementation requires 48 memory locations for instructions and 16 for data. Therefore,

we can search a 32GB database by using all 109 cells. The execution time within one cell

is 35 ns per comparison, for a total of 28.5x106 comparisons/sec. The potential for

massive parallelism would be exposed by having each of the 109 cells perform a unique

comparison, yielding an overall rate of 2.85x1016 comparisons/sec.

5.5. Discussion

The peak performance of NANA (assuming 1/2 the nodes compute) is significantly

higher than today’s supercomputers. NANA can potentially perform 4.12x1021 bitops/sec

while the IBM Blue Gene can achieve 4.6x1016 bitops/sec and the NEC Earth Simulator

can achieve a peak of 5.2x1015 bitops/sec. However, it will be a challenge for NANA to

realize this peak performance in practice. Developing these programs exposes two key

limitations of our current architecture: 1) under-utilization of nodes and network

connectivity, and 2) bottlenecked memory system.

Under-utilization of Nodes. One of the key limiting factors to achieving good

performance is the fact that nodes spend only a small fraction of their time doing useful

work. For example, if we are executing 10 arithmetic instructions, the node that executes

the first instruction is doing useful work only when a) it is receiving the first instruction

and b) it is receiving its operands for execution. Since there are 10 instructions being

executed, which will require 11 operands (assuming data is pre-loaded), the packet will

contain 868 bits (including header, instructions, operands, field separators and tail). Out

of these, only 220 bits (header, instruction to be executed, separators, two operands, the

operand separators and tail) are relevant to the execution of the instruction. Thus, the

node is doing “useful” work only when it is dealing with ~25% of the bits in the packet.

No useful computation is performed by the node in the remaining time.

The depth-first execution network increases the number of nodes usable during

execution, but it does not reduce node idle time. The execution network can be thought of

as a pipeline of nodes. The pipeline is most efficient only when it is full. Similarly, the

execution network is fully utilized only when all nodes are actively executing

instructions. This would require the creation of extremely long packets. However, the

longer the packet, the longer it takes for a node to execute instructions because longer

packets typically have longer instruction and data fields and a node needs to forward the

entire packet before it can handle the next packet. This limits the peak performance of

NANA.

Memory System Bottleneck. The memory system in NANA has multiple bottlenecks.

Because of the way it is designed, it is currently not possible to execute store instructions

(direct, indirect or conditional) from a packet before any load instructions (direct or

indirect). This limits the size and content of execution packets that can be created. In

addition, all memory requests are serialized through the anchor node. This creates a

substantial bottleneck at the anchor node. There is no easy way of alleviating this

bottleneck, without significantly adding to the complexity of the system. Finally, our

limited routing capability in the random network limits our ability to build a balanced

memory network. This often results in unbalanced networks with long latencies.

Despite its limitations, NANA demonstrates that it is possible to build a computing

system despite the severe technological constraints. As a first step NANA does

remarkably well. Future designs based on this technology can use the insights gained

from this design. We believe that NANA is a necessary first step toward exploiting

nanotechnology’s potential to overcome the “red brick wall.”

6. RELATED WORK

This paper covers a wide range of topics from novel bottom-up fabrication techniques

and emerging devices through microarchitecture and instruction set design. There is

significant literature on most of these important topics. However, to keep focus we

discuss only the most closely related architecture work.

The most related work is Dwyer’s proposal to use a DNA guided self-assembly

technique to build a massively parallel computer [Dwye03, Dwye04d, Dwye04a]. The

proposed machine has no communication between processing elements, thus targets

problems that are “embarrassingly parallel.” In contrast, our work aims to build a more

conventional processor. Goldstein’s work on nanofabrics leverages reconfigurable self-

assembled nanoelectronics to provide a defect tolerant architecture [Gold01]. Resonant

tunneling diodes (two terminal devices) are configured into supernodes of appropriate

functionality after a test phase maps out defective components. The nanofabric is

reconfigured for each program that executes. DeHon presents an architecture that exploits

three terminal devices (FETs) by self-assembling arrays of nanowires and FETs

[DeHo03]. Sparing and remapping are used to provide defect tolerance. Other research

investigates defect tolerant architectures [Han03,Han05,Heat98, Niko02, Snid04,

Thak05], various array-based nanoarchitectures [Anco96, Beck02,Foun98] and

alternative emerging nanoelectronic technologies [Gaya05, Niem01, Oski02, Tour00,

Tsen01] and some of the challenges that will be faced in dealing with these emerging

technologies and possible means of overcoming those challenges [Fort03, Niem04,

Stan03].

7. CONCLUSIONS

This paper presents an architecture that addresses the challenges posed by DNA-based

self-assembly of carbon nanotubes and other nanotechnologies with similar

characteristics (possibly even scaled CMOS). To overcome (1) limited node size, (2)

random interconnection of nodes, and (3) a high defect rate, we developed an active-

network architecture with an accumulator-based ISA. This architecture enables execution

packets to search through a sea of heterogeneous nodes for the functionality they need,

while avoiding defective nodes. We use an initial configuration phase to impose some

limited structure on the computing substrate, particularly for routing and memory

allocation. We simulate this architecture running simple programs to demonstrate its

viability, and provide preliminary performance numbers. While this architecture is only a

relatively unoptimized first step, it addresses some of the key challenges in this class of

nanotechnology and it highlights the technology’s architectural implications. There is a

significant amount of future work, including: fabrication, layout, ISA design, supporting

speculation and parallelism, etc.

REFERENCES

M. G. ANCONA, 1996. Systolic processor designs using single-electron digital circuits. Superlattices
and Microstructures, 20(4).

ADRIAN BACHTOLD, PETER HADLEY, TAKESHI NAKANISHI, AND CEES DEKKER, November 2001.
Logic circuits with carbon nanotube transistors. Science, 294:1317–1320.

PAUL BECKETT AND ANDREW JENNINGS, 2002. Toward nanocomputer architecture. In Proceedings
of the Seventh Asia-Pacific Computer Systems Architecture Conference, pages 141–150,
2002.

EREZ BRAUN, YOAV EICHEN, URI SIVAN, AND GDALYAHU BEN-YOSEPH, 1998. Dna-templated
assembly and electrode attachment of a conducting silver wire. Nature, 391:775–778.

P. J. BURKE, March 2003. An rf circuit model for carbon nanotubes. IEEE Transactions on
Nanotechnology, 2(1):55–58.

M. CASTRO AND B. LISKOV, February 1999. Practical byzantine fault tolerance. In Proceedings of
the Third USENIX Symposium on Operating Systems Design and Implementation, February
1999.

M. CAMPBELL-KELLY, 1998. Programming the edsac: early programming activity at the university
of cambridge. IEEE Annals of the History of Computing, 20(4):46–67.

YI CUI AND CHARLES M. LIEBER, February 2001. Functional nanoscale electronic devices
assembled using silicon nanowire building blocks. Science, 291:851–853.

W. BRUCE CULBERTSON, RICK AMERSON, RICHARD J. CARTER, PHILIP KUEKES, AND GREG SNIDER,
November 1996. The teramac custom computer: Extending the limits with defect tolerance.
In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, November 1996.

YOGEN K. DALAL AND ROBERT M. METCALFE, 1978. Reverse path forwarding of broadcast packets.
Communications of the ACM, 21(12):1040–1048.

WILLIAM J. DALLY, March 1992. Virtual channel flow control. IEEE Transactions on Parallel and
Distributed Systems, 3(2):194– 205.

ANDRE DEHON, February 2002. Array-based architecture for molecular electronics. In Proceedings
of the First Workshop on Non-Silicon Computation (NSC-1), February 2002.

ANDRE DEHON, March 2003. Array-based architecture for fet-based, nanoscale eletronics. IEEE
Transactions on Nanotechnology, 2(1):23–32.

T. DÜRKOP, S. A. GETTY, ENRIQUE COBAS, AND M. S. FUHRER, 2004. Extraordinary mobility in
semiconducting carbon nanotubes. Nano Letters, 4(1):35–39.

C. DWYER, M. GUTHOLD, M. FALVO, S. WASHBURN, R. SUPERFINE, AND D. ERIE, 2002. Dna
functionalized single-walled carbon nanotubes. Nanotechnology, 13:601–604.

C. DWYER, May 2003. Self-Assembled Computer Architecture: Design and Fabrication Theory.
PhD thesis, University of North Carolina.

C. DWYER, L. VICCI, J. POULTON, D. ERIE, R. SUPERFINE, S. WASHBURN, AND R. M. TAYLOR,
November 2004. The design of DNA self-assembled computing circuitry. IEEE
Transactions on VLSI, 12:1214–1220.

CHRIS DWYER, MOKY CHEUNG, AND DANIEL J. SORIN, August 2004. Semi-empirical spice models
for carbon nanotube fet logic. In Proceedings of the Fourth IEEE Conference on
Nanotechnology, August 2004.

CHRIS DWYER, VIJETA JOHRI, JAIDEV P. PATWARDHAN, ALVIN R. LEBECK, AND DANIEL J. SORIN,
September 2004. Design tools for self-assembling nanoscale technology. Institute of
Physics Nanotechnology, 15(9).

CHRIS DWYER, JOHN POULTON, RUSSELL TAYLOR, AND LEANDRA VICCI, 2004. DNA self-assembled
parallel computer architectures. Nanotechnology, pages 1688–1694.

C. DWYER, S. H. PARK, T. LABEAN, AND A. LEBECK, April 2005. The design and fabrication of a
fully addressable 8-tile DNA lattice. In Foundations of Nanoscience: Self-Assembled
Architectures and Devices, pages 187–191, April 2005.

JOSE A. B. FORTES, February 2003. Future challenges in vlsi system design. In Proceedings of the
IEEE Computer Society Annual Symposium on VLSI, pages 5–7, February 2003.

T. J. FOUNTAIN, M. J. B. DUFF, D. G. CRAWLEY, C. D. TOMLINSON, AND C. D. MOFFAT, 1998. The
use of nanoelectronic devices in highly-parallel computing systems. IEEE Transactions on
VLSI Systems, 6(1):31–38.

M. S. FUHRER, J. NYGARD, L. SHIH, M. FORERO, YOUNG-GUI YOON, M. S. C. MAZZONI,
HYOUNG JOON CHOI, JISOON IHM, STEVEN G. LOUIE, A. ZETTLE, AND PAUL L. MCEUEN,
April 2001. Crossed nanotube junctions. Science, 288:494–497.

AMAN GAYASEN, N. VIJAYKRISHNAN, AND MARY J. IRWIN, June 2005. Exploring technology
alternatives for nano-scale fpga interconnects. In Proceedings of the 42nd Annual Design
Automation Conference (DAC-2005), June 2005.

C. J. GLASS AND L. M. NI, May 1992. The turn model for adaptive routing. In Proceedings of the
19th Annual International Symposium on Computer Architecture, pages 278–287, May
1992.

SETH C. GOLDSTEIN AND MIHAI BUDIU, July 2001. Nanofabrics: Spatial computing using molecular
electronics. In Proceedings of the 28th Annual International Symposium on Computer
Architecture, pages 178–191, July 2001.

JIE HAN AND PIETER JONKER, January 2003. A defect- and fault-tolerant architecture for
nanocomputers. Nanotechnology, 14:224– 230.

JIE HAN, JIANBO GAO, YAN QI, PETER JONKER, AND JOSE A. B. FORTES, April 2005. Toward
hardware-redundant, fault-tolerant logic for nanoelectronics. IEEE Design & Test of
Computers, 22(4):328– 339.

MIRON HAZANI, FRANK HENNRICH, MANFRED KAPPES, RON NAAMAN NAAMAN, DANA PELED,
VICTOR SIDOROV, AND DMITRY SHVARTS, 2004. Dna-mediated self-assembly of carbon
nanotube-based electronic devices. Chemical Physics Letters, 391:389–392.

JAMES R. HEATH, PHILIP J. KUEKES, GREGORY S. SNIDER, AND R. STANLEY WILLIAMS, June 1998. A
defect-tolerant computer architecture: Opportunities for nanotechnology. Science,
280:1716–1721.

YU HUANG, XIANGFENG DUAN, YI CUI, LINCOLN J. LAUHON, KYOUN-HA KIM, AND CHARLES M.
LIEBER, November 2001. Logic gates and computation from assembled nanowire building
blocks. Science, 294:1313–1317.

CHALERMEK INTANAGONWIWAT, RAMESH GOVINDAN, AND DEBORAH ESTRIN, 2000. Directed
diffusion: A scalable and robust communication paradigm for sensor networks. In Mobile
Computing and Networking, pages 56–67, 2000.

ALI JAVEY, JING GUO, DAMON B. FARMER AND¬ß QIAN WANG, AND DUNWEI WANG, 2004. Carbon
nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics.
Nano Letters, 4(3):447–450.

DAVID B JOHNSON AND DAVID A MALTZ, 1996. Dynamic source routing in ad hoc wireless
networks. In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer
Academic Publishers.

HO-SEOP KIM AND JAMES E. SMITH, May 2002. An instruction set and microarchitecture for
instruction level distributed processing. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, May 2002.

HO-SEOP KIM AND JAMES E. SMITH, March 2003. Dynamic binary translation for accumulator-
oriented architectures. In In Proceedings of the International Symposium on Code
Generation and Optimization (CGO) 2003, pages 25–35, March 2003.

B. M. KIM, T. BRINTLINGER, E. COBAS, M. S. FUHRER, HAIMEI ZHENG, Z. YU, R. DROOPAD,
J. RAMDANI, AND K. EISENBEISER, March 2004. High-performance carbon nanotube
transistors on srtio3 si substrates. Applied Physics Letters, 84(11).

S. H. LAVINGTON, 1978. The manchester mark i and atlas: a historical perspective. Communications
of the ACM, 21(1):4–12.

D. LIU, S-H. PARK, J. H. REIF, AND T.H. LABEAN, 2004. Dna nanotubes self-assembled from tx tiles
as templates for conductive nanowires. Proceedings of the National Academy of Science,
101(3):717–722.

BENJAMIN R. MARTIN, DANIEL J. DERMODY, BRIAN D. REISS, MINGMING FANG, L. ANDREW LYON,
MICHAEL J. NATAN, AND THOMAS E. MALLOUK, August 1999. Orthogonal self-assembly on
colloidal gold-platinum nanorods. Advanced Materials, 11(12):1021–1025.

PAUL L. MCEUEN, MICHAEL S. FUHRER, AND HONGKUN PARK, March 2002. Single-walled carbon
nanotube electronics. IEEE Transactions on Nanotechnology, 1(1):78–85.

MICHAEL T. NIEMIER AND PETER M. KOGGE, July 2001. Exploring and exploiting wire-level
pipelining in emerging technologies. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 166–177, July 2001.

MICHAEL T. NIEMIER, R. RAVICHANDRAN, AND PETER M. KOGGE, October 2004. Using circuits and
systems-level research to drive nanotechnology. In Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processors (ICCD), pages 302–
309, October 2004.

K. NIKOLIC, A. SADEK, AND M. FORSHAW, 2002. Fault-tolerant techniques for nanocomputers.
Nanotechnology, 13:357–362.

MARK OSKIN, FREDERIC T. CHONG, AND ISAAC CHUANG, January 2002. A practical architecture for
reliable quantum computers. IEEE Computer, pages 79–87.

S. H. PARK, C. PISTOL, S. J. AHN, J. H. REIF, A. R. LEBECK, C. L. DWYER, AND T. H. LABean,
January 2006. Finite-size, fully-addressable dna tile lattices formed by hierarchical
assembly procedures. Angewandte Chemie, 45:735–739.

JAIDEV P. PATWARDHAN, CHRIS DWYER, ALVIN R. LEBECK, AND DANIEL J. SORIN, April 2004.
Circuit and system architecture for dna-guided self-assembly of nanoelectronics. In
Foundations of Nanoscience: Self-Assembled Architectures and Devices, pages 344– 358,
April 2004.

JAIDEV P. PATWARDHAN, CHRIS DWYER, ALVIN R. LEBECK, AND DANIEL J. SORIN, May 2005.

Evaluating the connectivity of self-assembled networks of nano-scale processing elements.
In IEEE International Workshop on Design and Test of Defect-Tolerant Nanoscale
Architectures (NANOARCH ’05), pages 2.1–2.8, May 2005.

MICHAEL D. SCHROEDER, ANDREW D. BIRRELL, MICHAEL BURROWS, HAL MURRAY, ROGER M.
NEEDHAM, THOMAS L. RODEHEFFER, EDWIN H. SATTERTHWAITE, AND CHARLES P.
THACKER, October 1991. Autonet: A high-speed, self-configuring local area network using
point to point links. IEEE Journal on Selected Areas in Communications, 9(8).

N.C. SEEMAN, 1999. Dna engineering and its application to nanotechnology. Trends in Biotech,
17:437–443.

K. SKINNER, R. L. CARROLL, S. WASHBURN, AND C. L. DWYER, November 2005. Nanowire
transistors, gate electrodes, and their directed self-assembly. In The 72nd Southeastern
Section of the American Physical Society (SESAPS), November 2005.

GREG SNIDER, PHILIP KUEKES, AND R STANLEY WILLIAMS, 2004. Cmos-like logic in defective,
nanoscale crossbars. Nanotechnology, (15):881–891.

M. R. STAN, PAUL D. FRANZON, SETH C. GOLDSTEIN, J. C. LACH, AND M. M. ZIEGLER, November
2003. Molecular electronics: from devices and interconnect to circuits and architecture. In
Proceedings of the IEEE, volume 91, pages 1940–1957, November 2003.

M. S. STRANO, C. A. DYKE, M. L. USREY, P. W. BARONE, M. J. ALLEN, H. W. SHAN, C. KITTRELL,
R. H. HAUGE, J. M. TOUR, AND R. E. SMALLEY, September 2003. Electronic structure
control of single-walled carbon nanotube functionalization. Science, 301:1519– 1522.

S.J. TANS, A.R.M. VERSCHUEREN, AND C. DEKKER, 1998. Room-temperature transistor based on a
single carbon nanotube. Nature, 393:49–52.

DAVID L. TENNENHOUSE AND DAVID J. WETHERALL, 1996. Towards an active network architecture.
Computer Communication Review, 26(2).

D. D. THAKER, F. IMPENS, I. L. CHUANG, R. AMIRTHARAJAH, AND F. T. CHONG, April 2005.
Recursive tmr: Scaling fault tolerance in the nanoscale era. IEEE Design & Test of
Computers, 22(4):298– 305.

JAMES M. TOUR, 2000. Molecular electronics. synthesis and testing of components. Accounts of
Chemical Research, 33(11):791– 804.

GREG Y. TSENG AND JAMES C. ELLENBOGEN, November 2001. Toward nanocomputers. Science,
294:1293–1294.

K. VAN BERKEL AND A. BINK, March 1996. Single-track handshake signaling with application to
micropipelines and handshake circuits. In Procceding of the Seconds International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 122–133,
March 1996.

S. J. WIND, J. APPENZELLER, R. MARTEL, V. DERYCKE, AND PH. AVOURIS, May 2002. Vertical
scaling of carbon nanotube field-effect transistors using top gate electrodes. Applied
Physics Letters, 80:3817–3819.

E. Winfree, F. Liu, L. A. Wenzler, and N.C. Seeman, 1998. Design and self-assembly of two-
dimensional dna crystals. Nature, 394:539.

HAO YAN, THOMAS H. LABEAN, LIPING FENG, AND JOHN H. REIF, July 2003. Directed nucleation
assembly of barcode patterned dna lattices. Proceedings of the National Academy of
Sciences, 100(14):8103–8108.

HAO YAN, SUNG HA PARK, GLEB FINKELSTEIN, JOHN H. REIF, AND THOMAS H. LABEAN, September
2003. Dna templated self-assembly of protein arrays and highly conductive nanowires.
Science, 301(5641):1882–1884.

Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. McLean, Steve R. Lustig,
Raymond E. Richardson, and Nancy G. Tassi, May 2003. Dna-assisted dispersion and
separation of carbon nanotubes. Nature Materials, 2:338–342.

