Density Matrices and Optical Bloch Equations

Assigned: March 25, 2020 Due: April 1, 2020

Problem 1: The Hamiltonian for an open system consisting of a two-level system interacting with a classical field and a bath is given by the Lindblad master equation:

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + \sum_{i} \gamma_{i} \left[L_{i} \rho L_{i}^{\dagger} - \frac{1}{2} \left(L_{i}^{\dagger} L_{i} \rho + \rho L_{i}^{\dagger} L_{i} \right) \right]$$
(1)

The system-bath interaction causes the spontaneous decay of the atoms excited state to the ground state. In this simple case there is only one jump operator L to consider, with a rate γ .

(a) What is the correct jump operator L needed to represent spontaneous decay? Show why this is correct.

(b) Using

$$\rho = \begin{pmatrix} \rho_{ee} & \rho_{eg} \\ \rho_{ge} & \rho_{gg} \end{pmatrix}$$
(2)

write down the spontaneous decay part of the master equation in matrix form. Explain why it makes sense.

(c) We will use the (by now) familiar two-level system Hamiltonian

$$H = \frac{\hbar}{2} \begin{pmatrix} 2\omega_0 & \Omega e^{-i\omega t} \\ \Omega^* e^{i\omega t} & 0 \end{pmatrix}$$
(3)

with Ω as the Rabi frequency, which depends on the applied electric field amplitude, phase, and the atom's dipole moment, and ω_0 as the energy level of the excited state. Derive the equations of motion for the density matrix components ρ_{ij} . You do not need to solve them, but you do need to make a transformation which eliminates explicit time dependence from the equations of motion. Write your solutions in terms of $\delta = \omega - \omega_0$, γ , Ω , and Ω^* .

These equations are known as the Optical Bloch Equations (OBE).

(d) For a two-level system, the rate R at which photons from the applied field are scattered by the atom is given by the rate at which the atom would jump from an excited to ground state (γ) multiplied by the probability of being in that excited state. Use the OBE to find the steady-state scattering rate R for a two-level system. Write your solution in terms of δ , γ , and $s_0 \equiv 2|\Omega|^2/\gamma^2$. Here s_0 is called the *on-resonance saturation parameter*, and it also often denoted by $s_0 = I/I_{\text{sat}}$, where I is the intensity of the applied field, and I_{sat} is known as the *saturation intensity*.

(e) Plot the scattering rate R as a function of δ for $\Omega = \{0.3, 1.0, 3.0, 10\}$. You should notice two features: saturation, and power broadening. Explain in your own words what you see, and why these terms make sense. What is the maximum steady-state scattering rate for a fixed γ and δ ?

(f) QuTiP's mesolve function allows for a simple implementation of the master equation using the c_ops input to set the jump operators. Write code to numerically solve the master equation for an open two-level system. Plot the excited state probability vs γt , assuming you start in the ground state and $\delta = -\Omega = -\gamma$.