
Perturbation Theory

February 19, 2020

Problem 1: In the framework of non-degenerate perturbation theory, calculate the second
order (proportional to λ2) change to state |n〉λ, as well as the third order (proportional to

λ3) energy shift. Using the notation from the lectures, this means calculating |n(2)〉 and E
(3)
n .

Problem 2: Consider the 1D harmonic oscillator problem with a quartic perturbation. This
Hamiltonian for a particle of mass m can be written as:
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where x̂ = d(â† + â)/
√

2 and p̂ = i~(â†− â)/
√

2d are the position and momentum operators,
and d =

√
~/mω is the characteristic length scale of the harmonic oscillator. Here we are

using λ as the dimensionless scaling parameter to keep track of the perturbations.

(a) Using non-degenerate perturbation theory, calculate the energy shifts of the ground state
|0〉 up to order λ3.

(b) This problem is actually a very important topic in quantum mechanics with a long
history of being studied, resulting in hundreds of published papers. It has no known analytic
solutions. As far back as 1969, Bender and Wu (Phys. Rev., Vol. 184, No. 5, p. 1231-
1260) actually calculated the energy shift of the ground state to several more orders in the
perturbation. Skim this paper to see the higher order terms. What, if any, is the radius
of convergence? In other words, what, if any, is the minimum value of λ which guarantees
convergence?

(c) This is known as an asymptotic expansion. Plot or tabulate the ground state energy

shifts E
(k)
0 vs k to a sufficiently high order in λ for the following three values of λ: 0.2, 0.1,

and 0.05. Use this information to estimate the total energy shift of the ground state for each
value of λ.

(d) Confirm your results by using QuTiP to numerically calculate the ground state energy
directly. Compare your estimates from Part (c) to the numerical solutions.

Problem 3: Let’s now consider a degenerate case: The 2D harmonic oscillator with the
following Hamiltonian:

H =
p̂2x + p̂2y
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where we have a perturbative term, denoted as usual with λ, which couples the position
operators of the two dimensions.

(a) This problem is analytically solvable. Re-write this Hamiltonian in terms of x̂ + ŷ and

x̂ − ŷ. Then, choose a new canonical X̂, P̂x, Ŷ , and P̂y which obey the typical position-

momentum commutation relations [X̂, P̂x] = [Ŷ , P̂y] = i~.

(b) It should now be clear what the eigenvalues of the Hamiltonian are. Write down the
general solution, as well as specifically the three lowest energy states.

(c) Now, let’s use perturbation theory. First, what is the expression for the unperturbed
energy levels? How many degenerate states are there per energy level?

(d) Calculate the energy shift of the ground state to order λ2, as well as the energy shift of
the first and second excited states to order λ1.

(e) Compare your perturbative solutions to the exact spectrum.

(f) Finally, use QuTiP to numerically calculate the energy levels of the three lowest energy
states for λ = 0.1. Does it match the exact spectrum?
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