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Problem 1: Using the code you wrote for the time-evolution of a spin 1/2 particle in a

magnetic field, we will now investigate what happens with pulse sequences. To do this, we

will need to include the phase of the applied magnetic field and use ~B(t) = �B1[cos(!t +

�)êx + sin(!t + �)êy] � B0êz. This should be a simple modification to your existing code.

The time-dependent Hamiltonian is now:
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We will use some terminology in the following work that is commonly used when discussing

2-level systems:

The pi-time t⇡ is commonly written as t⇡ = ⇡/!R, and a pulse of length t⇡ is known as a

⇡-pulse. Similarly, a ⇡/2-pulse is a pulse of half this duration. It’s important to note that

this is only true for a square pulse. More accurately, when the applied oscillating magnetic

field is subject to a slowly varying (compared to !) envelope function g(t) such that a ⇡-

and ⇡/2-pulse with corresponding pi- and pi/2-times, are defined such that:
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The general logic also holds true for other fractions of ⇡. It’s clear that, for the case of a

constant envelope function, the ⇡-time t⇡ = ⇡/!R, as expected.

(a) Apply two pulses to your system. First, apply a resonant (! = !L) ⇡/2-pulse. Then,

wait a non-zero amount of time without applying any oscillating magnetic field B1 (but

maintain the constant magnetic field B0). After this wait time, apply a second resonant

⇡/2-pulse with the same phase as the first. Provide the excited state probability vs time, as

well as the Bloch sphere animation. Be very aware of rounding errors that lead to incorrect

pulse areas.

(b) Repeat (a), but now apply the seconds pulse ⇡/2 out of phase with the initial pulse.

Provide the excited state probability vs time, as well as the Bloch sphere animation.
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(c) The coordinate representation ~r = xêx + yêy + zêz on the Bloch sphere for a given state

| i is given by x = h |�x| i, y = h |�y| i, and z = h |�z| i, where the �i are the Pauli

spin matrices. Show that:

d~r

dt
= ~! ⇥ ~r (3)

for some ~!. Explain what this result means, intuitively. How does this allow you to make

sense of your results for parts (a) and (b)?

(d) Modify your result from (c) for the case where we removed the explicit time-dependence

of the Hamiltonian. You don’t have to re-do all the algebra. Again, explain intuitively what

it means.

(e) Composite pulses are often used in NMR and atomic physics to compensate for experi-

mental errors in pulse length or frequency mismatch (!�!L 6= 0). There exists an enormous

amount of literature on various pulse sequences and their e↵ects on errors, but as an example

here we will look at the relatively simple, but commonly used, BB1 family of compensated

pulses. It is specifically designed to compensate for pulse length errors, which are most often

the primary source of error in an atomic physics experiment.

BB1 works by performing three pulses in addition to the desired native pulse. These pulses

can be applied before or after the native pulse. The correction pulse lengths have pulse

lengths, in order, ⇡, 2⇡, ⇡, and their phases are �, 3�, �. Here � = arccos(� ✓
2⇡ ) and ✓ is the

desired pulse angle.

Implement the BB1 sequence for a ⇡/2-pulse using your code, and show how it outperforms

the native ⇡/2-pulse if all applied pulse angles are too large by 20%.
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