
Magnetic Moment and L-S Coupling

January 29, 2020

Problem 1: Consider the evolution of a magnetic moment ~µ subjected to a combined
oscillating and static magnetic field ~B = −B1[cos(ωt)êx + sin(ωt)êy]−B0êz.

(a) Show that the Hamiltonian H = −~µ · ~B for this system can be written as:

H =
~
2

(
ωL ωRe

−iωt

ωRe
iωt −ωL

)
(1)

where ωL = γB0 and ωR = γB1 are the Larmor and Rabi frequencies associated with the
static and rotating fields, resp., and γ is the gyromagnetic ratio.

(b) Using the basis states |e〉 =

(
1
0

)
and |g〉 =

(
0
1

)
, and defining a general state |ψ〉 =

cg(t) |g〉 + ce(t) |e〉, write down and solve the equations of motion in terms of the initial
conditions cg(0) and ce(0).

(c) Use the qutip module to write a program to solve the Schrödinger equation for this
Hamiltonian. Plot the probability of finding the electron in |e〉 as a function of time for the
parameters (ωL, ωR, ω) = (1, 0.5, 1.75), and assuming the initial state is |g〉.

(d) QuTiP has a handy tool for visualizing states on the Bloch sphere. Create an animation
where you plot the state vector on the Bloch sphere at each point in time. You can do
this by saving your state vectors in a sequence of *.png files, and using a separate utility
to combine them into a video file (for example, using ffmpeg). Create an animation for
(ωL, ωR, ω) = (1, 0, 0) and starting in an equal superposition of |g〉 and |e〉. Describe the
observed behavior.

(e) Create another animation, this time with the parameters (ωL, ωR, ω) = (π, 1, π), and
starting in |g〉. Describe the observed behavior.

(f) Transform the Hamiltonian into a frame where it no longer explicitly depends on time.

(g) Create an animation for the state vector solutions to the effective Hamiltonian you de-
rived in (f) using the same parameters as in (e). How does the simulation differ? Describe
any differences and similarities. Describe what we have effectively done.
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Problem 2: It is possible to change the basis states from uncoupled |mlms〉 basis states to
coupled |j mj〉 basis states by using the following equation:

|j mj〉 =
l∑

ml=−l

s∑
ms=−s

〈l ml sms|j mj〉 |mlms〉

=
l∑

ml=−l

s∑
ms=−s

C
j mj

l ml sms
|mlms〉

(2)

Here the 〈l ml sms|j mj〉 terms are known as the Clebsch-Gordan (CG) coefficients. There
exists a general solution for the CG coefficients, and these solutions have been tabulated and
are widely available. Nevertheless, it is important to know where they come from and how
they are obtained. We will derive the CG coefficients for the

2D3/2 mj = 1/2 (3)

state in two ways. The overall sign for any set of states is arbitrarily chosen, so feel free to
ignore it.

(a) Write Ĵ2 − L̂2 − Ŝ2 in terms of z-components of L̂ and Ŝ, and the ladder operators L̂±
and Ŝ±. Use this result, together with Eq. 2, to obtain the requested CG coefficients.

(b) Start from what is called the ”stretched state”, i.e. the state with maximal (or minimal)
j and mj for a given l and s. In this case the upper (+) and lower (−) stretched states are
j = 5/2,mj = ±5/2. Use the ladder operators J± and orthogonality conditions to obtain
the desired CG coefficients.

(c) Confirm your answers using the QuTiP module’s built-in functions.
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