
Chapter 2

The Hydrogen Atom

2.1 Central Potential Hamiltonian

2.1.1 Hamiltonian for central potential problem in spherical co-
ordinates

Central potential problems relate to potentials that depend only on the distance between
the origin and the particle r, such as the Coulomb potential felt by an electron bound to an
atomic nucleus (see Chapter 1.2). In this case, the potential is independent of the direction,
and it is useful to describe the angular momentum operators in spherical coordinates. First,
we note that

x = r sin ✓ cos�
y = r sin ✓ sin�
z = r cos ✓,

(2.1)

from which we derive the relationship

r =
p

x2 + y2 + z2

✓ = arctan(
p

x2 + y2/z)
� = arctan(y/x).

(2.2)

The partial derivatives between the coordinates can be computed as

@r
@x = x

r ,
@r
@y = y

r ,
@r
@z = z

r
@✓
@x = cos ✓ cos�

r ,
@✓
@y = cos ✓ sin�

r ,
@✓
@z = �

sin ✓
r

@�
@x = �

y cos2 �
x2 ,

@�
@y = cos2 �

x ,
@�
@z = 0.

(2.3)

The partial derivatives in the Cartesian coordinates translate to derivatives in spherical
coordinates as
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(2.4)

Thus, the angular momentum operators can be rewritten as
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(2.5)

This is an alternative way to derive Eq. 1.24. If we let the radial component of the momentum
operator p̂r = �i~(1r

@
@rr), the Hamiltonian with central potential V (r) in Eq. 1.25 can be

written as

Ĥ =
p̂
2
r

2mr
+

L̂2

2mr2
+ V (r). (2.6)

2.1.2 Spherical harmonics

We can multiply the expression of the Hamiltonian with central potential, Eq. 2.6, by r
2.

Then, the first and the third terms will only depend on r, and the second term will only
depend on the angles ✓ and �. We consider the eigenvalue equation corresponding to the
orbital angular momentum operators L̂2 and L̂z, parametrized with two quantum numbers
l and m, written as

L̂2
Y

m
l (✓,�) = ~2l(l + 1)Y m

l (✓,�), (2.7)

L̂zY
m
l (✓,�) = ~mY

m
l (✓,�). (2.8)

These are explicit functional forms of the eigen equations for the orbital angular momentum
operator discussed in the previous chapter, in Eq. 1.36. In terms of Dirac notations, the
eigenstates of the orbital angular momentum operators |l,mi can be expressed in spatial
coordinates by projecting it with a position eigenfunction |ri

hr |l,mi = Y
m
l (✓,�). (2.9)

These eigenstates are called spherical harmonics of degree l and order m. Next, we solve the
Eqs. 2.7 and 2.8 to find the explicit functional form of the spherical harmonics. Noting the
form of the L̂2 operator given in Eq. 2.5, we note that when we multiply it by sin2

✓, the
first (second) term becomes completely independent of � (✓). This means we can separate
variables again. We let Y m

l (✓,�) ⌘ ⇥m
l (✓)�m(�), and rewrite Eq. 2.7 as
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Dividing the equation by ⇥m
l (✓)�m(�)/ sin

2
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1

⇥m
l (✓)
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Since the left (right) hand side of this equation only depends on � (✓), each of these terms
must be a constant. Letting these equal to m

2 and replacing partial derivative to a full
derivative, we get two equations

d
2

d�2
�m(�) = �m

2�m(�) (2.12)


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d

d✓

✓
sin ✓

d

d✓

◆
+ l(l + 1) sin2

✓

�
⇥m

l (✓) = m
2⇥m

l (✓). (2.13)

The solution to Eq. 2.12 is straightforward: �m(�) = e
±im�. Given that in real space, the

solution has to wrap itself around every 2⇡, we conclude that m has to be an integer. We can
rewrite Eq. 2.13 by replacing the variable t = cos ✓, and noting that d

d✓ = dt
d✓

d
dt = � sin ✓ d

dt ,
we get 

d

dt

✓
(1� t

2)
d

dt

◆
+ l(l + 1)�

m
2

1� t2

�
⇥m

l (t) = 0. (2.14)

This equation is called the Legendre equation, and its solutions are the associated Legen-
dre polynomials P

m
l (t). Therefore, the spherical harmonics can be written as Y

m
l (✓,�) =

AlmP
m
l (cos ✓)eim�, where Alm is the normalization factor. Enforcing the normalization con-

dition

Z ⇡

✓=0

Z 2⇡

�=0

Y
m
l Y

m0⇤
l0 d⌦ = �ll0�mm0 , (2.15)

we conclude that

Y
m
l (✓,�) =

s
2l + 1

4⇡

(l �m)!

(l +m)!
P

m
l (cos ✓)eim�

. (2.16)

2.1.3 Solution to free Hamiltonian

A quantum particle in free space, in the absence of any potential, is readily solved in Cartesian
coordinate system, as the spatial variables {x, y, z} separate readily. The solution is a linear
superposition of plan waves

 pqr(x, y, z) = Apqr exp [�i(kpx+ kqy + krz)] , (2.17)
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where the momentum vector ~k = (kp, kq, kr) describes the quantum numbers determined by
the boundary conditions of how the free space is quantized.

In spherical coordinates, we seek the solution to the time-independent Schrödinger equation
with three quantum numbers k, l,m as

Ĥ klm(r, ✓,�) = Eklm klm(r, ✓,�) = EklmRkl(r)Y
m
l (✓,�), (2.18)

where we further separated the radial and the angular variables into two functions Rkl(r) that
only depends on radial variable and Y

m
l (✓,�) that only depends on the angular variables.

This is justified because the Hamiltonian does not have any terms that mixes the radial and
angular operators (r appears in the second term of Eq. 2.6, but acts as a scalar rather than
an operator). The Schrödinger equation can be reduced to

~2
2m

"
�

✓
1

r

@

@r
r

◆2

+
L̂2

~2r2

#
Rkl(r)Y

m
l (✓,�) = EklmRkl(r)Y

m
l (✓,�). (2.19)

Dividing both sides by ~2
2mr2Rkl(r)Y m

l (✓,�) gives

�
r
2

Rkl(r)

✓
1

r

@

@r
r

◆2

Rkl(r)� r
2
Eklm +

1

~2Y m
l (✓,�)

L̂2
Y

m
l (✓,�) = 0. (2.20)

The first and second terms on the left hand side of Eq. 2.20 are independent of the angular
coordinates ✓ and �, and the third term is independent of the radial coordinate r. This
means that the third term has to be a constant (i.e., no coordinate dependence), which can
potentially depend on the quantum numbers l and m. Letting this to be Clm, we get the
eigenvalue equation for the L̂2 operator

L̂2
Y

m
l (✓,�) = ~2ClmY

m
l (✓,�). (2.21)

The solution of this equation is Clm = l(l + 1), where l is a non-negative integer or non-
negative half-integer (Eq. 1.43). Putting this value back into Eq. 2.20 yields the di↵erential
equation for the radial coordinates

"
�

✓
1

r

@

@r
r

◆2

+
l(l + 1)

r2

#
Rkl(r) =

2mEklm

~2 Rkl(r). (2.22)

We define k such that 2mEklm ⌘ k
2 and let x ⌘ kr, then Eq. 2.22 simplifies to

d
2

dx2
Rl(x) +

2

x

d

dx
Rl(x) +


1�

l(l + 1)

x2

�
Rl(x) = 0, (2.23)

where the index k has dropped since the equation is now independent of k. This di↵erential
equation is known as the spherical Bessel equation. There are two types solutions to this
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equation, known as the spherical Bessel functions jl(x) and the spherical Neumann functions
nl(x). These functions can be generated from simple elementary functions, as

jl(x) = (�x)l
✓
1

x

d

dx

◆l ✓sin x

x

◆
, (2.24)

nl(x) = �(�x)l
✓
1

x

d

dx

◆l ⇣cos x
x

⌘
. (2.25)

The spherical Bessel and spherical Neumann functions have the following asymptotic behav-
ior near x = 0:

limx!0 |jl(x)| < 1

limx!0 |nl(x)| ! 1.
(2.26)

So, we choose the spherical Bessel function as the solution, so that

 klm(r, ✓,�) = jl(kr)Y
m
l (✓,�) (2.27)

and Eklm = ~2k2
/2m ⌘ Ek, where the wavefunction is properly normalized. Upon measure-

ment of energy, L̂2 and L̂z the wavefunction yields Ek, l(l + 1)~2 and m~, respectively.

2.2 Hamiltonian for the Hydrogen Atom

2.2.1 Two particle problem

A hydrogen atom is the simplest atom, with one (negatively-charged) electron bound to the
nucleus of the atom consisting of one (positively-charged) proton. This is an example of a
two-particle system, where the interaction between the two particles depends on the relative
position of the two particles. We let m1, r̂1 and p̂1 (m2, r̂2 and p̂2) be the mass, position
and momentum of the proton (electron), respectively. Then, the total Hamiltonian of the
system is given by

Ĥ =
p̂2
1

2m1
+

p̂2
2

2m2
+ V (|~r1 � ~r2|). (2.28)

We now define the relative position operator r̂ ⌘ r̂2 � r̂1 and the total momentum op-
erator P̂ ⌘ p̂1 + p̂2. We note that these two operators commute, by checking [r̂, P̂ ] =
[r̂2, p̂2]� [r̂1, p̂1] = 0. We the find the conjugate variables for these two operators, the rela-
tive momentum operator p̂ and the total position operator R̂ such that each component of
the operators satisfy the commutation relations

[r̂i, p̂j] = [R̂i, P̂j] = i~�ij, (2.29)
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where the subscripts here show the x, y or z component of each operator. Letting the
operators be linear combinations of the component operators R̂ = ar̂1 + br̂2 and p̂ =
cp̂1 + dp̂2, and enforcing the commutation relation given by Eq. 2.29, we find that

R̂ =
m2

m1 +m2
r̂2 +

m1

m1 +m2
r̂1 (2.30)

p̂ =
m1

m1 +m2
p̂2 �

m2

m1 +m2
p̂1 (2.31)

One can readily check that the kinetic energy portion of the Hamiltonian then becomes

p̂2
1

2m1
+

p̂2
2

2m2
=

P̂ 2

2M
+

p̂2

2µ
, (2.32)

where M = m1 +m2 and µ = m1m2/(m1 +m2) are the total mass and the reduced mass of
the two-particle system, respectively. The total Hamiltonian in Eq. 2.28 now breaks down
into two parts Ĥ = ĤCM + Ĥrel, where

ĤCM =
P̂ 2

2M
(2.33)

Ĥrel =
p̂2

2µ
+ V (|r|) (2.34)

are the center-of-mass and relative Hamiltonian that describes the center-of-mass motion
and relative motion of the two particles, respectively.

2.2.2 Potential energy for the hydrogen atom

The potential energy between the electron and the nucleus (proton) for the hydrogen atom
is given by, in SI units,

V (r) = �
1

4⇡✏0

q
2

r
= �

e
2

r
, (2.35)

where q = 1.602⇥ 10�19C is the elementary charge (magnitude of the charge of an electron),
✏0 is the electrical permittivity of vacuum, and e

2
⌘ q

2
/4⇡✏0 is defined for simplicity. The

electron mass (me = 9.109 ⇥ 10�31kg) is much smaller than the proton mass (mp = 1.67 ⇥
10�27 kg ⇡ 1, 836me), so the total mass M ⇡ mp and the reduced mass µ ⇡ me.

The total Hamiltonian of the hydrogen atom reduces to

Ĥ =
P̂ 2

2M
+

p̂2

2µ
�

e
2

r
. (2.36)

The first term simply describes the motion of the atom (that includes both electron and the
nucleus) in free space, and is not very interesting at this time. The interesting aspect we
would like to focus on is the internal state of the electron, bound by the Coulomb interaction
with the nucleus. So, we focus on the relative Hamiltonian
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Ĥrel =
p̂2

2µ
�

e
2

r
. (2.37)

This is a particle in a central potential, and can be described using spherical coordinates, as
shown in Eq. 2.6.

2.3 Solution of the hydrogen atom

2.3.1 Radial Schrödinger equation and its solutions

Using the separation of variable technique similar to that used for the free particle in Sec-
tion 2.1.3 and recognizing that the eigen energy of the solution is negative (binding energy,
noted by �E, where E is a positive number), the radial portion of the Schrödinger equation
for the electron in a hydrogen atom becomes

"
�
~2
2µ

✓
1

r

d

dr
r

◆2

+
~2l(l + 1)

2µr2
�

e
2

r
+ E

#
Rnl(r) = 0, (2.38)

where we choose two quantum numbers n and l to identify the radial function Rnl. If we
define a di↵erent radial function unl(r) = rRnl(r), Eq. 2.38 can be rewritten as


�

d
2

dr2
+

l(l + 1)

r2
�

2µ

~2
e
2

r
+

2µE

~2

�
unl(r) = 0. (2.39)

If we define  as E ⌘ ~22/2µ and rescale the radial variable using  as ⇢ ⌘ 2r, the
equation reduces to 

d
2

d⇢2
�

l(l + 1)

⇢2
+

✓
�

⇢
�

1

4

◆�
unl(⇢) = 0, (2.40)

where

�
2 =

✓
µe

2

~2

◆2

=
µe

4

2~2
2µ

~22 ⌘
R
E
. (2.41)

If we define the Bohr radius a0 ⌘ ~2/µe2 ⇡ 0.53 Å, we can express R = µe
4
/2~2 = ~2/2µa20,

which is called the Rydberg constant (R = 2.18⇥ 10�18 J = 13.6 eV).

We solve the radial Schrödinger equation 2.40. We first look for the asymptotic solution.
When ⇢� 1, we can ignore the 1/⇢ and 1/⇢2 terms, and the equation simplifies to

d
2
unl

d⇢2
�

1

4
unl = 0. (2.42)

The solution to this equation, which does not diverge at large ⇢ values, is given by unl(⇢) ⇠
e
�⇢/2. Next, we look at asymptotic solutions when ⇢ ⌧ 1, where 1/⇢ ⌧ 1/⇢2. In this limit,
the equation simplifies to

d
2
unl

d⇢2
�

l(l + 1)

⇢2
unl = 0. (2.43)
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The solution to this equation, which does not diverge at small ⇢ values, is given by unl(⇢) ⇠
⇢
l+1. So, we use the ansatz for the solution to take the form

unl(⇢) = e
�⇢/2

⇢
l+1

F (⇢), (2.44)

where F (⇢) =
Pimax

i=0 Ci⇢
i. The polynomial expansion of the function F (⇢) must terminate

after finite number of terms to ensure that the boundary condition |unl(⇢)| < 1 as ⇢! 1.
Plugging the solution form Eq. 2.44 into the radial equation in Eq. 2.40 gives a di↵erential
equation for the function Fn(⇢)

⇢
d
2

d⇢2
F (⇢) + (2l + 2� ⇢)

d

d⇢
F (⇢) + (�� l � 1)F (⇢) = 0. (2.45)

This di↵erential equation is called the Laguerre equation, and the solutions to this equation
are called the generalized (or associated) Laguerre polynomials. The condition that the
function F (⇢) is finite everywhere leads to a requirement that the parameter � is quantized
to an integer, such that � = imax + l + 1. We define the principal quantum number n ⌘

imax + l+1 � 1. Then, from Eq. 2.41, we find that the binding energy of the electron to the
nucleus in the hydrogen atom is quantized as

En = �
R
n2

= �
13.6 eV

n2
. (2.46)

With these quantum numbers, the solution F (⇢) is the associated Laguerre polynomial
L
2l+1
n�l�1(⇢), where ⇢ = 2nr and n = 1/(a0n).

2.3.2 Properties of the solutions of the hydrogen atom

In this section, we summarize the implications of the solutions. First we note that the
summation for the polynomial F (⇢) terminates at imax = n� l�1 � 0. From this condition,
we conclude that l  n� 1. For a fixed n, there are n possible values of the orbital angular
momentum quantum number l = 0, 1, 2, . . . , n�1. For each l value, there are 2l+1 distinct
values of m = �l, �l + 1, . . . , l � 1, l. So, the degeneracy of the quantum states (total
number of states with the same energy) at En is

Pn�1
l=0 (2l + 1) = n

2.

The final wavefunction of the electron in a hydrogen atom is given by

 nlm(r, ✓,�) = Rnl(r)Y
m
l (✓,�) =

Anlunl

r
Y

m
l (✓,�) = A

0
nle

�⇢/2
⇢
l
L
2l+1
n�l�1(⇢) Y

m
l (✓,�), (2.47)

where A
0
nl is the normalization constant for the radial function and ⇢ = 2nr.

For the nucleus with total charge of Zq, the binding energy of the electron is quantized at
En = �Z

2R/n2.

For example, let’s consider the ground state of the hydrogen atom, where n = 1. we also see
that l = 0 and m = 0, and the wavefunction is given by
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 100(r, ✓,�) = A
0
10e

�⇢/2
L
1
0(⇢) Y

0
0 (✓,�) =

A
0
10

p
4⇡

e
�r/a0 , (2.48)

given that L
1
0(⇢) = 1, Y 0

0 (✓,�) = 1/
p
4⇡ and 1 = 1/a0. we find from the normalization

condition that

|A
0
nl|

2

Z 1

0

e
�2r/a0r

2
dr = 1, (2.49)

from which we derive |A
0
nl| = 2/a3/20 . Therefore, the ground state wavefunction of the

hydrogen atom is given by

 100(r, ✓,�) =
1p
⇡a

3
0

e
�r/a0 , (2.50)

The fully generalized form of the hydrogen wavefunction is given by

 nlm(r, ✓,�) =

s✓
2

na0

◆3 (n� l � 1)!

2n(n+ l)!
e
�⇢/2

⇢
l
L
2l+1
n�l�1(⇢) Y

m
l (✓,�), (2.51)


