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1. Explain the following concepts:
a. What is a coherent dark state in a three-level, lambda(A)-system, and how is it
formed? (5 points)

b. What is the process of adiabatic elimination in considering a far-detuned Raman
transition in a three-level, lambda(A)-system, and under what conditions is this
approximation justified? (5 points)



2. Entanglement Swapping: Consider two maximally entangled states, [ )1, =
(10)1]0), + |1)1]1),)/V2 between qubits #1 and #2, and |1, )34 = (|0)3]0), +
|1)3]1)4)/V/2 between qubits #3 and #4. Following the procedure discussed in class,
describe the procedure for teleporting the state of qubit #2 to qubit #4, by performing
a Bell-state measurement between qubits #2 and #3. Show that this results in a
maximally entangled state between qubits #1 and #4. (10 points)



3. Orthogonality between o and 7z emission: Selection rules for dipole transition
(Lecture Notes 7.1.4) are given by Al = +1 and Am = 0, £1. When Am = 11, the
polarization of the emitted photon is g4, and is called the o - emission. When Am = 0,
the polarization of the emitted photon is 7, and is called the 7 - emission. These two
polarization components are orthogonal, and it should be possible to filter one
polarization against the other. In the problems below, we choose z-axis as the
quantization axis, and consider practical methods for collecting the emitted photons of
one type of polarization and not the other. We further consider dipole emission between
a S ground state orbital (/r= 0) and a P excited state orbital (/;= 1) for a hydrogen-like
atom with a nuclear spin of /=, so that A/ = 1.
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a. Consider collecting the emitted photons along the z-axis. We want to increase the
solid angle of the collection cone, so that a large fraction of the emitted photons can
be collected. Show that in spherical coordinates, the electric field corresponding to
the dipole radiation takes the form (10 points):
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[Hint: See T. Kim, P. Maunz and J. Kim, Phys Rev. A84, 063423 (2011).]
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b. Imagine a situation where we are collecting photons into a cylindrically symmetric
mode, such as into a single mode fiber. This can be described in cylindrical
coordinates along the z axis. We can express the electric field in a single mode fiber
by the Gaussian mode function G (p) = e~*/®)*(ax + B¥), where p is the radial
coordinate, @ is the waist of the Gaussian mode, and |a|? +|B|? = 1. By
considering the overlap integral between the electric field of the emitted photon and
the Gaussian mode, show that the coupling of the #-field into the cylindrically
symmetric mode is uniformly zero, and the coupling of the o, -field is non-zero.
(10 points).



c. Next consider the case where we are collecting the photons along the equator, on
x-axis, again into a single mode fiber. This time, the Gaussian mode is given by
G(p) = e~P/®)*(az + B9). Show that the 7-field coupled into the single mode
fiber becomes strictly linearly polarized along the z-axis. (10 points)

[Hint: See L. J. Stephenson et al., Phys. Rev. Lett. 124, 110501 (2020).]



d. Show that the o -field coupled into the single mode fiber also becomes strictly
linearly polarized, but along the y-axis. (10 points)



4. Moelmer-Serensen gate driven with Raman beams: In class, we considered the case
where Mglmer-Sgrensen gate was driven by two fields, red- and blue-detuned from the
sidebands of the qubit transition. Here, we consider the case where the qubit transitions
are driven by Raman transitions. Since each of the red- and blue-detuned transitions is
now driven by two fields, there are four fields involved in driving the gate. Since each
Raman transition must be able to drive a sideband transition, the momentum difference
of the two Raman beams must be non-zero. Here we consider each pair of the Raman
beams to be arranged in a counter-propagating geometry.

a. Re-write each of Egs. 11.37 and 11.38 in the lecture notes with both pairs of Raman
beams and their phases (total of four beams). Derive the critical parameters
involved in the Malmer-Serensen gate operator Uys(t), such as o(f) parameter and
S operator in Eq. 11.48, in terms of the phases of the four Raman beams. (10 points)



b. Since the large detuning A from the excited state provides us the flexibility of
choosing the center frequency of the laser beams (small changes in the center
frequency does not change the dynamics, as long as A >> Q;, O, §), we can realize
the two pairs of Raman beams with only three frequencies of lasers. We use one
laser beam (Beam A) incident from the left with a single frequency wa, and another
laser beam (Beam B) incident from the right with two frequencies wgs,; and wgp,
where the first subscript denotes which beam the frequency is provided, and the
second subscript denotes the two frequency tones on the beam (@, < wBp), which
can be readily realized using an optical frequency modulator on a monotone laser
beam. We consider two different options for driving the two pairs of Raman beams,
as shown in the (a) and (b) panels of the figure below [Figure 9 from P. J. Lee et
al., J. Optics B 7, S371 (2005), although we consider counter-propagating beam
geometry that is slightly different from (c)]. Discuss the direction of the momentum
kick (wavevector difference) exerted from the laser beams to the atoms for the red-
sideband and blue-sideband transitions in the MS gate in these two scenarios. (10
points)
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Write down the spin phase and motional phase for these two optical arrangements,
as a function of the three phases of the laser frequencies ¢a, @B and @B . Since the
two frequencies s and wgy are created by modulating a single laser beam with
an optical modulator, their relative phase relationship Ags = @B - @B, is determined
by the phase of the modulating RF source, and can be made very stable. The phase
difference between the two counter-propagating laser beams, Aga = @a - @g,; (i =
r, b), is determined by the optical beam paths and is difficult to achieve
interferometric stability. Discuss which phase (spin phase vs. motional phase) is
more stable in both of these optical arrangements. (10 points)



Discuss the implication of these two scenarios in realizing a stable MS gate. Discuss
its implications when considering a long quantum computation, where many MS
gates are needed over an extended period of time. Make quantitative arguments
assuming that in a realistic scenario, the gate detuning (e, as defined in the lecture
notes) is about 10kHz, the timescale for the stability of the optical beam paths is
~10ms, and the total number of MS gates needed in a “long quantum computation”
is 1,000-10,000. (10 points)



