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1. Explain the following concepts:  
a. What is a coherent dark state in a three-level, lambda(l)-system, and how is it 

formed? (5 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. What is the process of adiabatic elimination in considering a far-detuned Raman 
transition in a three-level, lambda(l)-system, and under what conditions is this 
approximation justified? (5 points) 

  



2. Entanglement Swapping: Consider two maximally entangled states, |𝜓!⟩"# =
(|0⟩"|0⟩# + |1⟩"|1⟩#)/√2	  between qubits #1 and #2, and |𝜓!⟩$% = (|0⟩$|0⟩% +
|1⟩$|1⟩%)/√2	 between qubits #3 and #4. Following the procedure discussed in class, 
describe the procedure for teleporting the state of qubit #2 to qubit #4, by performing 
a Bell-state measurement between qubits #2 and #3. Show that this results in a 
maximally entangled state between qubits #1 and #4. (10 points) 

  



3. Orthogonality between s and p emission: Selection rules for dipole transition 
(Lecture Notes 7.1.4) are given by Δ𝑙 = 	±1 and Δ𝑚 = 0,±1. When Δ𝑚 = ±1, the 
polarization of the emitted photon is 𝜎±, and is called the s - emission. When Δ𝑚 = 0, 
the polarization of the emitted photon is p, and is called the p - emission. These two 
polarization components are orthogonal, and it should be possible to filter one 
polarization against the other. In the problems below, we choose z-axis as the 
quantization axis, and consider practical methods for collecting the emitted photons of 
one type of polarization and not the other. We further consider dipole emission between 
a S ground state orbital (lf = 0) and a P excited state orbital (li = 1) for a hydrogen-like 
atom with a nuclear spin of I = ½ , so that Dl = 1. 

 
a. Consider collecting the emitted photons along the z-axis. We want to increase the 

solid angle of the collection cone, so that a large fraction of the emitted photons can 
be collected. Show that in spherical coordinates, the electric field corresponding to 
the dipole radiation takes the form (10 points): 
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[Hint: See T. Kim, P. Maunz and J. Kim, Phys. Rev. A84, 063423 (2011).]  
  



b. Imagine a situation where we are collecting photons into a cylindrically symmetric 
mode, such as into a single mode fiber. This can be described in cylindrical 
coordinates along the z axis. We can express the electric field in a single mode fiber 
by the Gaussian mode function 𝐺(𝜌) = 	 𝑒-(//1)"(𝛼𝑥M + 𝛽𝑦M), where r is the radial 
coordinate, w is the waist of the Gaussian mode, and |𝛼|# + |𝛽|# = 1 . By 
considering the overlap integral between the electric field of the emitted photon and 
the Gaussian mode, show that the coupling of the p-field into the cylindrically 
symmetric mode is uniformly zero, and the coupling of the 𝜎±-field is non-zero. 
(10 points). 

  



c. Next consider the case where we are collecting the photons along the equator, on 
x-axis, again into a single mode fiber. This time, the Gaussian mode is given by 
�⃗�(𝜌) = 	 𝑒-(//1)"(𝛼�̂� + 𝛽𝑦M). Show that the p -field coupled into the single mode 
fiber becomes strictly linearly polarized along the z-axis. (10 points) 
[Hint: See L. J. Stephenson et al., Phys. Rev. Lett. 124, 110501 (2020).] 

  



d. Show that the s+ -field coupled into the single mode fiber also becomes strictly 
linearly polarized, but along the y-axis. (10 points) 
 

  



4. Mølmer-Sørensen gate driven with Raman beams: In class, we considered the case 
where Mølmer-Sørensen gate was driven by two fields, red- and blue-detuned from the 
sidebands of the qubit transition. Here, we consider the case where the qubit transitions 
are driven by Raman transitions. Since each of the red- and blue-detuned transitions is 
now driven by two fields, there are four fields involved in driving the gate. Since each 
Raman transition must be able to drive a sideband transition, the momentum difference 
of the two Raman beams must be non-zero. Here we consider each pair of the Raman 
beams to be arranged in a counter-propagating geometry. 
 
a. Re-write each of Eqs. 11.37 and 11.38 in the lecture notes with both pairs of Raman 

beams and their phases (total of four beams). Derive the critical parameters 
involved in the Mølmer-Sørensen gate operator 𝑈34(𝑡), such as a(t) parameter and 
𝑆U operator in Eq. 11.48, in terms of the phases of the four Raman beams. (10 points) 

  



b. Since the large detuning D from the excited state provides us the flexibility of 
choosing the center frequency of the laser beams (small changes in the center 
frequency does not change the dynamics, as long as D >> W1, W2, d), we can realize 
the two pairs of Raman beams with only three frequencies of lasers. We use one 
laser beam (Beam A) incident from the left with a single frequency wA, and another 
laser beam (Beam B) incident from the right with two frequencies wB,r and wB,b, 
where the first subscript denotes which beam the frequency is provided, and the 
second subscript denotes the two frequency tones on the beam (wB,r < wB,b), which 
can be readily realized using an optical frequency modulator on a monotone laser 
beam. We consider two different options for driving the two pairs of Raman beams, 
as shown in the (a) and (b) panels of the figure below [Figure 9 from P. J. Lee et 
al., J. Optics B 7, S371 (2005), although we consider counter-propagating beam 
geometry that is slightly different from (c)]. Discuss the direction of the momentum 
kick (wavevector difference) exerted from the laser beams to the atoms for the red-
sideband and blue-sideband transitions in the MS gate in these two scenarios. (10 
points) 

 

 
  

Phase control of trapped ion quantum gates

X0,i indicates the equilibrium position of the i th ion along the
x-axis and !φr and !φb are the phases of the red and blue
sidebands respectively. We can simplify this expression to

ĤI =
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i=1,2
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where

σ̂
(i)
φS,i

= σ̂i ·
[
cos(φS,i)x + sin(φS,i)y

]

= σ̂ (i)
+ e−iφS,i + σ̂

(i)
− eiφS,i . (30)

Here Fi q2 = h̄η2&i D′
n2,n′

2
is the differential force on the

i th ion, φS,i = −(!kr X0,i − !φr + !kb X0,i − !φb)/2 is
the spin phase of the i th ion, φM,i = (!kr X0,i − !φr −
!kb X0,i + !φb)/2 is the phase of the force on the i th ion and
Fm1,m2 = ±F1e−iφM,1 ±F2e−iφM,2 where +Fi (−Fi ) corresponds
to the force on the spin state mi = ↑φS,i (mi = ↓φS,i ) on the
i th ion. As in the σ̂z gate, we set the phases of the forces
acting on the two ions to be opposite, i.e. F1eiφM,1 = −F2eiφM,2 ,
and choose δ and F such that the round-trip geometric phase
satisfies the condition '0 = 2π |F1q2|2/(h̄δ)2 = π/2. Then
the final state of the gate is equivalent to the final state in
equation (27), except that |↑i ⟩ and |↓i⟩, the eigenstates of σ̂ (i)

z ,
are replaced by |↑φS,i

⟩ and |↓φS,i
⟩, the eigenstates of σ̂

(i)
φS,i

. This
gate written in the σ̂z basis produces the following truth table:

|↑↑⟩ → 1√
2

{|↑↑⟩ − iei(φs1+φs2) |↓↓⟩}

|↑↓⟩ → 1√
2
{|↑↓⟩ − i |↓↑⟩}

|↓↑⟩ → 1√
2
{|↓↑⟩ − i |↑↓⟩}

|↓↓⟩ → 1√
2

{|↓↓⟩ − ie−i(φs1+φs2) |↑↑⟩} .

(31)

Note that after the gate, only the spin phase remains, while
the motion phase has no effect on the final state. As in
the σ̂z gate, drifts in the motion phase between gates is
acceptable. However, the spin phase must be maintained
between gates, or alternatively, an equivalent entangling gate
with the dependence on the spin phase removed can be formed
using a combination of σ̂φ gate and other quantum operations.

An analysis of noise sources for the spin phase requires
careful consideration of the physical experimental set-up in
the laboratory. To drive the red sideband and the blue
sideband transitions simultaneously, a minimum of three
optical frequencies are required, assuming that one frequency
can be used for both sideband couplings (see figure 9). Since
each pair of frequencies driving a sideband must have a non-
zero wavevector difference !k, the optical beams can be
set up such that each of the two frequencies in the field
travelling along wavevector kB drives a sideband transition
when combined with a single frequency field travelling along
a different wavevector kA. In other words, if the field along
kA has frequency ωA, then the field propagating along kB

contains both a frequency component ωA ± (ω′
0 − ω2 − δ)

to drive a detuned red sideband and a frequency component
ωA ±(ω′

0 +ω2 +δ) to drive a detuned blue sideband. The choice

Figure 9. A σ̂φ-dependent force is driven by electromagnetic fields
with at least three optical frequencies as shown in (a). Two
frequencies separated by ω′

0 − ων − δ drive a detuned red sideband
and a third frequency differs from one of them by ω′

0 + ων + δ to
drive a detuned blue sideband. (i) and (ii) are two examples of
possible frequency configurations. Some of the fields can have
overlapping wavevectors, but any pair of frequencies that drives a
sideband must have a non-zero wavevector difference with a
component in the x direction.

of the positive or negative frequency differences between the
fields determines the sign of !kr and !kb, and determines
the gate’s susceptibility to the phase stability between the two
wavevectors.

2.3.1. Phase sensitive geometry. The first scenario involves
frequencies of both fields along kB being higher (or lower)
than ωA. Then the wavevector differences !k for both the
red and the blue sideband propagate in the same direction
(figure 10(a)). For example, let the field along kB include both
ωA + ω′

0 −ω2 − δ and ωA + ω′
0 + ω2 + δ frequency components.

Then the wavevector differences!kr = kB−kA = !kb for the
red sideband and the blue sideband point in the same direction.
Instability in the relative beam paths results in an equal phase
shifts in the sideband transitions, i.e. δφr = δφb = δφ. This
results in a net shift in the spin phase by δφS,i = δφ. This is not
a desirable situation since the outcome of the gate is sensitive
to changes in the beam path length difference on the scale of
an optical wavelength.

However, we note that the spin phase shift is exactly the
same as the arbitrary phase shift on the non-copropagating
carrier transition (driven with the field propagating along kB

having frequency ωA + ω′
0) due to the same changes in the

interferometer paths. Therefore it is possible to construct a
phase gate using the following Ramsey experiment:

(1) perform a π/2 rotation on both ions with phase shift
δφS,i = δφ using the non-copropagating transition;

S379



c. Write down the spin phase and motional phase for these two optical arrangements, 
as a function of the three phases of the laser frequencies fA, fB,r and fB,b. Since the 
two frequencies wB,r and wB,b are created by modulating a single laser beam with 
an optical modulator, their relative phase relationship DfB = fB,r - fB,b is determined 
by the phase of the modulating RF source, and can be made very stable. The phase 
difference between the two counter-propagating laser beams, DfAB = fA - fB,i (i = 
r, b), is determined by the optical beam paths and is difficult to achieve 
interferometric stability. Discuss which phase (spin phase vs. motional phase) is 
more stable in both of these optical arrangements. (10 points) 

  



d. Discuss the implication of these two scenarios in realizing a stable MS gate. Discuss 
its implications when considering a long quantum computation, where many MS 
gates are needed over an extended period of time. Make quantitative arguments 
assuming that in a realistic scenario, the gate detuning (𝜖, as defined in the lecture 
notes) is about 10kHz, the timescale for the stability of the optical beam paths is 
~10ms, and the total number of MS gates needed in a “long quantum computation” 
is 1,000-10,000. (10 points) 

 


